Beej's Guide to Unix IPC

Brian “Beej Jorgensen” Hall
beej@beej.us

Version 1.0.1
July 25, 2007

Copyright © 2007 Brian “Beej Jorgensen” Hall

Contents

1.1. Audience

1.2. Platform and Compiler
1.3. Official Homepage

1.4. Email Policy

1.5. Mirroring

1.6. Note for Trandators

1.7. Copyright and Distribution

2. A FOrK() PrIME et enree e

2.1. “Seek ye the Gorge of Eternal Peril”
2.2. "I'm mentaly prepared! Give me The Button!”
2.3. Summary

G o = USSR SPRS

3.1. You can't SI &KI LL the President!
3.2. Everything you know is wrong
3.3. Some signals to make you popular

4.1. “These pipes are clean!”

4.2. f ork() and pi pe() —Yyou have the power!
4.3. The search for Pipe as we know it

4.4, Summary

O FIF OIS

5.1. A New FIFO is Born

5.2. Producers and Consumers

5.3. O_NDELAY! I'm UNSTOPPABLE!

5.4. Multiple Writers—How do | multiplex all these?
5.5. Concluding Notes

B. FIlE LOCKING. ...ttt et

6.1. Setting a lock
6.2. Clearing a lock
6.3. A demo program
6.4. Summary

7. MESSAQE QUEBUES........eviiiiieeiiieestee s stee st e s sae e s e s e sa e s sbe e e sbe e s sba e s saae e e nnnee s

7.1. Where's my queue?

7.2. “Are you the Key Master?’
7.3. Sending to the queue

7.4. Receiving from the queue
7.5. Destroying a message queue
7.6. Sample programs, anyone?
7.7. Summary

NNNRRPR PR

ww

8. Semaphores.

9. Shared Memory Segments.

10. Memory Mapped Files.

11. Unix Sockets.

12. More | PC Resources.

8.1. Grabbing some semaphores

8.2. Controlling your semaphores with senct | ()
8.3. senop() : Atomic power!

8.4. Destroying a semaphore

8.5. Sample programs

8.6. Summary

9.1. Creating the segment and connecting

9.2. Attach me—getting a pointer to the segment
9.3. Reading and Writing

9.4. Detaching from and deleting segments

9.5. Concurrency

9.6. Sample code

10.1. Mapmaker

10.2. Unmapping the file
10.3. Concurrency, again?!
10.4. A simple sample
10.5. Summary

11.1. Overview

11.2. What to do to be a Server

11.3. What to do to be a client

11.4. socket pai r () —quick full-duplex pipes

12.1. Books
12.2. Other online documentation
12.3. Linux man pages

Contents

27
28
29
30
30
33

.................................... 34

34
35
35
35
36

..................................... 38

38
39
39
39
41

..................................... 42

42
42
45
46

..................................... 48

48
48
48

1. Intro

Y ou know what's easy?f or k() iseasy. You can fork off new processes all day and have
them deal with individual chunks of aproblem in parallel. Of course, its easiest if the processes
don't have to communicate with one another while they're running and can just sit there doing
their own thing.

However, when you start f or k() 'ing processes, you immediately start to think of the
neat multi-user things you could do if the processes could talk to each other easily. So you try
making a global array and then f or k() 'ing to seeif it isshared. (That is, seeif both the child
and parent process use the same array.) Soon, of course, you find that the child process has its
own copy of the array and the parent is oblivious to whatever changes the child makesto it.

How do you get these guys to talk to one another, share data structures, and be generally
amicable? This document discusses several methods of Interprocess Communication (IPC) that
can accomplish this, some of which are better suited to certain tasks than others.

1.1. Audience

If you know C or C++ and are pretty good using a Unix environment (or other POSI X ey
environment that supports these system calls) these documents are for you. If you aren't that
good, well, don't sweat it—you'll be able to figure it out. | make the assumption, however, that
you have afair smattering of C programming experience.

Aswith Begj's Guide to Network Programming Using Internet Sockets', these documents
are meant to springboard the af orementioned user into the realm of IPC by delivering a concise
overview of various IPC techniques. Thisis not the definitive set of documents that cover this
subject, by any means. Like | said, it is designed to ssmply give you afoothold in this, the
exciting world of 1PC.

1.2. Platform and Compiler
The examples in this document were compiled under Linux using gcc. They should
compile anywhere agood Unix compiler is available.

1.3. Official Homepage
This official location of thisdocument ishtt p: // beej . us/ gui de/ bgi pc/ .

1.4. Email Policy

I'm generally available to help out with email questions so feel free to writein, but | can't
guarantee aresponse. | lead a pretty busy life and there are timeswhen | just can't answer a
guestion you have. When that's the case, | usualy just delete the message. It's nothing personal;
| just won't ever have the time to give the detailed answer you require.

Asarule, the more complex the question, the less likely | am to respond. If you can narrow
down your question before mailing it and be sure to include any pertinent information (like
platform, compiler, error messages you're getting, and anything else you think might help
me troubleshoot), you're much more likely to get aresponse. For more pointers, read ESR's
document, How To Ask Questions The Smart Way°.

If you don't get aresponse, hack on it some more, try to find the answer, and if it's still
elusive, then write me again with the information you've found and hopefully it will be enough
for meto help out.

1. http://beej.us/guidel/bgnet/)
2.http://ww. catb. org/ ~esr/faqs/smart-questions. ht n

1

http://beej.us/guide/bgnet/
http://beej.us/guide/bgipc/
http://www.catb.org/~esr/faqs/smart-questions.html

Beej's Guide to Unix IPC 2

Now that I've badgered you about how to write and not write me, I'd just like to let you
know that | fully appreciate all the praise the guide has received over the years. It'sareal morale
boost, and it gladdens me to hear that it is being used for good! : -) Thank you!

1.5. Mirroring

Y ou are more than welcome to mirror this site, whether publicly or privately. If you
publicly mirror the site and want me to link to it from the main page, drop me aline at
beej @eej . us.

1.6. Note for Translators

If you want to trandlate the guide into another language, write me at beej @eej . us and I'll
link to your trandation from the main page. Feel free to add your name and contact info to the
tranglation.

Please note the license restrictions in the Copyright and Distribution section, below.

Sorry, but due to space constraints, I cannot host the translations myself.

1.7. Copyright and Distribution

Beg's Guide to Network Programming is Copyright © 2007 Brian “Begj Jorgensen” Hall.

With specific exceptions for source code and trandations, below, this
work islicensed under the Creative Commons Attribution- Noncommercial-

No Derivative Works 3.0 License. To view acopy of thislicense, visit
http://creativecomons. org/licenses/by-nc-nd/ 3.0/ orsend aletter to Creative
Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

One specific exception to the “No Derivative Works™ portion of the licenseis as follows:
this guide may be freely translated into any language, provided the tranglation is accurate, and
the guide isreprinted in its entirety. The same license restrictions apply to the trandation as to
the original guide. The trandlation may also include the name and contact information for the
trangdlator.

The C source code presented in this document is hereby granted to the public domain, and
is completely free of any license restriction.

Educators are freely encouraged to recommend or supply copies of this guide to their
students.

Contact beej @eej . us for more information.

http://creativecommons.org/licenses/by-nc-nd/3.0/

2. Afork() Primer

“Fork”, aside from being one of those words that begins to appear very strange after you've
typed it repeatedly, refers to the way Unix creates new processes. This document gives a quick
and dirty f or k() primer, since use of that system call will pop up in other IPC documents. If
you already know all about f or k() , you might as well skip this document.

2.1. “Seek ye the Gorge of Eternal Peril”

f or k() can bethought of as aticket to power. Power can sometimes be thought of as
aticket to destruction. Therefore, you should be careful while messing with f or k() on your
system, especially while people are cranking their nearly-late semester projects and are ready to
nuke the first organism that brings the system to a halt. It's not that you should never play with
fork(), you just have to be cautious. It's kind of like sword-swallowing; if you're careful, you
won't disembowel yourself.

Sinceyou're still here, | suppose I'd better deliver the goods. Like | said, f or k() ishow
Unix starts new processes. Basically, how it worksisthis: the parent process (the one that
already exists) f or k() 'sachild process (the new one). The child process gets a copy of the
parent's data. Voila! Y ou have two processes where there was only one!

Of course, there are al kinds of gotchas you must deal with when f or k() ing processes
or else your sysadmin will get irate with you when you fill of the system process table and they
have to punch the reset button on the machine.

First of all, you should know something of process behavior under Unix. When a process
dies, it doesn't really go away completely. It's dead, so it's no longer running, but a small
remnant is waiting around for the parent process to pick up. This remnant contains the return
value from the child process and some other goop. So after a parent processf or k() sa
child process, it must wai t () (or wai t pi d()) for that child processto exit. It isthis act of
wai t () ing that allows all remnants of the child to vanish.

Naturally, there is an exception to the above rule: the parent can ignore the SI GCHLD
signal (SI GCLD on some older systems) and then it won't have to wai t () . This can be done (on
systems that support it) like this:

mai n()

{
signal (SIGCHLD, SIGIGA\); /* now | don't have to wait()! */

fork();fork();fork(); /* Rabbits, rabbits, rabbits! */

Now, when achild process dies and has not been wai t () ed on, it will usually show upin
apslisting as“<def unct >". It will remain thisway until the parent wai t () sonit, or it isdealt
with as mentioned below.

Now there is another rule you must learn: when the parent dies beforeit wai t () sfor the
child (assuming it is not ignoring SI GCHLD), the child is reparented to the init process (PID 1).
Thisisnot aproblem if the child is still living well and under control. However, if the child is
already defunct, we'rein abit of abind. See, the original parent can no longer wai t (), sinceit's
dead. So how doesinit know towai t () for these zombie processes?

The answer: it's magic! Well, on some systems, init periodically destroys all the defunct
processes it owns. On other systems, it outright refuses to become the parent of any defunct
processes, instead destroying them immediately. If you're using one of the former systems, you
could easily write aloop that fills up the process table with defunct processes owned by init.
Wouldn't that make your sysadmin happy?

Beej's Guide to Unix IPC 4

Y our mission: make sure your parent process either ignores SI GHCLD, or wai t () sfor all
the children it f or k() s. Well, you don't always have to do that (like if you're starting a daemon
or something), but you code with caution if you're af or k() novice. Otherwise, fedl free to blast
off into the stratosphere.

To summerize: children become defunct until the parent wai t () s, unless the parent
isignoring SI GCHLD. Furthermore, children (living or defunct) whose parents die without
wai t () ing for them (again assuming the parent is not ignoring SI GCHLD) become children of
the init process, which deals with them heavy-handedly.

2.2.“I'm mentally prepared! Give me The Button!”
Right! Here's an example® of how to usef or k() :

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>
i nt mai n(voi d)
{
pid_t pid;
int rv;
switch(pid = fork()) {
case -1:
perror("fork"); /* sonmething went wong */
exit(1); /* parent exits */
case O:
printf(" CH LD This is the child process!\n");
printf(" CHLD M PIDis %\n", getpid());
printf(" CHILD: My parent's PIDis %\ n", getppid());
printf(" CH LD Enter ny exit status (make it small): ");
scanf (" %", &rv);
printf(" CHLD |'moutta herel\n");
exit(rv);
def aul t:
printf("PARENT: This is the parent process!\n");
printf("PARENT: My PIDis %\n", getpid());
printf("PARENT: My child's PIDis %\n", pid);
printf("PARENT: |I'mnow waiting for ny child to exit()...\n");
wait (&rv);
printf("PARENT: My child' s exit status is: %l\n", WEXI TSTATUS(rv));
printf("PARENT: |'moutta herel\n");
}
return O;
}

Thereisaton of stuff to note from this example, so we'll just start from the top, shall we?
pi d_t isthe generic process type. Under Unix, thisisashort. So, | cal f or k() and save
thereturn value in the pi d variable. f or k() iseasy, sinceit can only return three things:

0 If it returns 0, you are the child process. Y ou can get the parent's
PID by calling get ppi d() . Of course, you can get your own PID
by calling get pi d() .
-1:
3.http://beej.us/guidel/bgi pc/ exanpl es/forkl.c

http://beej.us/guide/bgipc/examples/fork1.c

Beej's Guide to Unix IPC 5

If it returns - 1, something went wrong, and no child was created.
Useperror () to see what happened. You've probably filled the
process table—if you turn around you'll see your sysadmin coming
at you with afireaxe.

ese Any other value returned by f or k() meansthat you're the parent
and the value returned is the PID of your child. Thisisthe only
way to get the PID of your child, since thereisno get cpi d() call
(obviously due to the one-to-many relationship between parents and
children.)

When the child finally callsexi t () , the return value passed will arrive at the parent when
itwai t ()s. Asyou can seefromthewai t () call, there's some weirdness coming into play
when we print the return value. What's thisWEXI TSTATUS() stuff, anyway? Well, that isa
macro that extracts the child's actual return value from the valuewai t () returns. Yes, thereis
more information buried in that i nt . I'll let you look it up on your own.

“How,” you ask, “doeswai t () know which process to wait for? | mean, since the parent
can have multiple children, which one doeswai t () actually wait for?’ The answer issimple,
my friends: it waits for whichever one happens to exit first. If you must, you can specify exactly
which child to wait for by calling wai t pi d() with your child's PID as an argument.

Another interesting thing to note from the above example is that both parent and child use
ther v variable. Does this mean that it is shared between the processes? NO! If it was, | wouldn't
have written all this IPC stuff. Each process has its own copy of all variables. Thereisalot of
other stuff that is copied, too, but you'll have to read the man page to see what.

A fina note about the above program: | used a switch statement to handle thef or k() , and
that's not exactly typical. Most often you'll see an if statement there; sometimesit's as short as:
if (!fork()) {

printf("lI'mthe child!/'\n");
exit(0);

} else {

printf("l'mthe parent!\n");
wai t (NULL) ;

}
Oh yeah—the above example also demonstrates how to wai t () if you don't care what the
return value of the child is: you just call it with NULL as the argument.

2.3. Summary

Now you know all about the mighty f or k() function! It's more useful that a wet bag of
worms in most computationally intensive situations, and you can amaze your friends at parties.
Additionally, it can help make you more attractive to members of the opposite sex, unless you're
male.

3. Signals

Thereisavery easy, simple, and sometimes useful method for one process to bug another:
signals. Basically, one process can “raise” asigna and have it delivered to another process. The
destination process signal handler (just afunction) isinvoked and the process can handle it.

For instance, one process might want to stop another one, and this can be done by sending
the signal SI GSTOP to that process. To continue, the process has to receive signal SI GCONT.
How does the process know to do this when it receives a certain signal? Well, many signals are
predefined and the process has a default signal handler to deal with it.

A default handler? Yes. Take SI G NT for example. Thisistheinterrupt signal that a
process receives when the user hits~C. The default signal handler for SI G NT causes the
process to exit! Sound familiar? Well, as you can imagine, you can override the SI G NT to do
whatever you want (or nothing at al!) Y ou could have your processpri nt f () “Interrupt? No
way, Jose!” and go about its merry business.

So now you know that you can have your process respond to just about any signal in just
about any way you want. Naturally, there are exceptions because otherwise it would be too
easy to understand. Take the ever popular SI GKI LL, signal #9. Have you ever typed “kill -9
nnnn” to kill arunaway process? Y ou were sending it SI GKI LL. Now you might also remember
that no process can get out of a“kill -9”, and you would be correct. SI GKI LL isone of the
signals you can't add your own signal handler for. The aforementioned SI GSTOP isalso in this
category.

(Aside: you often use the Unix “kill” command without specifying asignal to send...so
what signal isit? The answer: SI GTERM Y ou can write your own handler for S| GTERMS0 your
process won't respond to aregular “kill”, and the user must then use “Kill -9” to destroy the
process.)

Areall the signals predefined? What if you want to send a signal that has significance
that only you understand to a process? There are two signals that aren't reserved: SI GUSR1 and
SI GQUSER2. Y ou are free to use these for whatever you want and handle them in whatever way
you choose. (For example, my cd player program might respond to SI GUSR1 by advancing to
the next track. In thisway, | could control it from the command line by typing “Kill -SIGUSR1
nnnn”.

3.1. You can't SI &I LL the President!

Asyou can guess the Unix “kill” command is one way to send signals to a process. By
sheer unbelievable coincidence, thereis asystem call called ki | | () which does the same thing.
It takes for its argument a signal number (as defined in si gnal . h) and aprocess ID. Also, there
isalibrary routine called r ai se() which can be used to raise asignal within the same process.

The burning question remains: how do you catch a speeding SI GTERM? Y ou need to use
thesi gnal () call and passit a pointer to afunction that isto be your signal handler. Never
used pointers to functions? (Y ou must check out the gsort () routine sometime!) Don't worry,
they're simple: if “f oo(” hi ! “); " isacal to function f oo() , then “f 00” isapointer to that
function. Y ou don't even have to use the address-of operator.

Anyway, here'sthesi gnal () breakdown:

‘voi d (*signal (int sig, void (*func)(int)))(int); |

What is the name of Bruce Dickinson does that mean? Well, the basic situation is this:
we are going to pass the signal to be handled as well as the address of the signal handler as
argumentsto thesi gnal () cal. The signal handler function that you define takesasinglei nt
as an argument, and returnsvoi d. Now, the si gnal () call returns either an error, or a pointer

6

Beej's Guide to Unix IPC 7

to the previous signal handler function. So we have the call si gnal () which acceptsasignal
and a pointer to a handler as arguments, and returns a pointer to the previous handler. And the
above code isjust how we declare that.

Fortunately, using it is much easier than it looks. All you need is a handler function that
takesani nt asan argument and returnsvoi d. Then call si gnal () to set it up. Easy? Let'sdo
asimple program that will handle SI G NT and stop the user from quitting through ~ C, called
sigint.c™®

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <signal . h>
i nt mai n(voi d)
{
voi d sigint_handler(int sig); /* prototype */
char s[200];
if (signal (SIA NT, sigint_handler) == SIG ERR) {
perror("signal");
exit(1l);
}
printf("Enter a string:\n");
if (gets(s) == NULL)
perror("gets");
el se
printf("You entered: \"%\"\n", s);
return O;
}
voi d sigint_handler(int sig)
{
printf("Not this time!\n");
}

This program has two functions. mai n() which sets up the signal handler (using the
si gnal () call), and si gi nt _handl er () whichisthe signal handler, itself.

What happens when you run it? If you are in the midst of entering a string and you
hit ~C, the call to get s() failsand setsthe global variable er r no to EI NTR. Additionally,
si gi nt _handl er () iscalled and doesits routine, so you actually see:

Enter a string:
the qui ck brown fox jumCNot this tine!
gets: Interrupted system cal

Here'savital tidbit of information that | neglected to mention earlier: when the signal
handler is called, the signal handler for that particular signal isreset to the default handler! The
practical upshot of thisisthat our si gi nt _handl er () would trap ~Cthefirst time we hit it,
but not after that. The quick and dirty solution isto reset the signal handler within itself like so:

voi d sigint_handler(int sig)
{
signal (SIA NT, sigint_handler); /* reset it to this function */
printf("Not this time!\n");
}

The problem with this setup is that it introduces a race condition. If an interrupt occurs
and the handler is called, but then a second interrupts occurs before the first is able to reset the

4. http://beej.us/guidel/bgipc/exanpl es/sigint.c

http://beej.us/guide/bgipc/examples/sigint.c

Beej's Guide to Unix IPC 8

interrupt handler, the default handler will be called. Be aware that if you're expecting lots of
signals this might be an issue to watch out for.

3.2. Everything you know is wrong

Thesi gnal () system call isthe historical method of setting up signals. The POSIX
standard has defined awhole slew of new functions for masking which signals you want to
receive, checking which signals are pending, and setting up signal handlers. Since many of these
calls operate on groups, or sets, of signals, there are more functions that deal with signal set
mani pul ation.

In short, the new method of signal handling blows the old one away. | will include a
description in an up-and-coming version of this document, time permitting.

3.3. Some signhals to make you popular
Hereisalist of signalsyou (most likely) have at your disposal:

Signal Description

SIGABRT Process abort signal.

SIGALRM Alarm clock.

SIGFPE Erroneous arithmetic operation.
SIGHUP Hangup.

SIGILL [llegal instruction.

SIGINT Terminal interrupt signal.

SIGKILL Kill (cannot be caught or ignored).
SIGPIPE Write on a pipe with no oneto read it.
SIGQUIT Terminal quit signal.

SIGSEGV Invalid memory reference.

SIGTERM Termination signal.

SIGUSR1 User-defined signal 1.

SIGUSR2 User-defined signal 2.

SIGCHLD Child process terminated or stopped.
SIGCONT Continue executing, if stopped.
SIGSTOP Stop executing (cannot be caught or ignored).
SIGTSTP Terminal stop signal.

SIGTTIN Background process attempting read.
SIGTTOU Background process attempting write.
SIGBUS Buserror.

SIGPOLL Pollable event.

SIGPROF Profiling timer expired.

SIGSYS Bad system call.

SIGTRAP Trace/breakpoint trap.

SIGURG High bandwidth data is available at a socket.

Beej's Guide to Unix IPC

SIGVTALRM Virtual timer expired.
SIGXCPU CPU time limit exceeded.
SIGXFSZ File size limit exceeded.

Each signal hasits own default signal handler, the behavior of which is defined in your
local man pages.

4. Pipes

Thereis no form of IPC that is simpler than pipes. Implemented on every flavor of
Unix, pi pe() andf or k() make up the functionality behind the“|” in“ls| more”. They are
marginally useful for cool things, but are a good way to learn about basic methods of |PC.

Since they're so very very easy, | shant spent much time on them. We'll just have some
examples and stuff.

4.1. “These pipes are clean!”

Wait! Not so fast. | might need to define a*“file descriptor” at this point. Let me put it this
way: you know about “FI LE*” from st di o. h, right? Y ou know how you have all those nice
functionslikef open(),fcl ose(),fwite(), and soon?Well, those are actualy high level
functions that are implemented using file descriptors, which use system calls such asopen(),
creat(),close(),andwite().Filedescriptorsaresimply i nt s that are analogousto
FI LE*'sinstdi o. h.

For example, st di n isfile descriptor 07, st dout is“1”, and st derr is“2". Likewise,
any filesyou open using f open() get their own file descriptor, although this detail is hidden
from you. (Thisfile descriptor can be retrived from the FI LE* by using thefi | eno() macro
fromst di o. h.)

£d[1] £d[0]

f’iﬁ)é? -_-_-\T~
write () read ()
How a pipeisorganized.

Basically, acall to the pi pe() function returnsapair of file descriptors. One of these
descriptorsis connected to the write end of the pipe, and the other is connected to the read end.
Anything can be written to the pipe, and read from the other end in the order it camein. On
many systems, pipes will fill up after you write about 10K to them without reading anything out.

As a useless example®, the following program creates, writes to, and reads from a pipe.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <uni std. h>

i nt mai n(voi d)
{
int pfds[2];
char buf[30];

if (pipe(pfds) == -1) {
perror("pipe");
exit(1);

}

printf("witing to file descriptor #%\n", pfds[1]);
wite(pfds[1], "test", 5);

printf("reading fromfile descriptor #%\n", pfds[O0]);
read(pfds[0], buf, 5);

printf("read \"%\"\n", buf);

return O;

5.http://beej.us/ gui de/ bgi pc/ exanpl es/ pi pel.c

10

http://beej.us/guide/bgipc/examples/pipe1.c

Beej's Guide to Unix IPC 11

} |

Asyou can see, pi pe() takesan array of two i nt sas an argument. ASsuming no errors, it
connects two file descriptors and returns them in the array. The first element of the array isthe
reading-end of the pipe, the second is the writing end.

4.2.fork() and pi pe() —you have the power!

From the above example, it's pretty hard to see how these would even be useful. Well,
since thisisan IPC document, let'sput af or k() inthe mix and see what happens. Pretend that
you are atop federal agent assigned to get a child process to send the word “test” to the parent.
Not very glamorous, but no one ever said computer science would be the X-Files, Mulder.

First, we'll have the parent make a pipe. Secondly, we'll f or k() . Now, thef or k()
man page tells us that the child will receive a copy of all the parent's file descriptors, and this
includes a copy of the pipe's file descriptors. Alors, the child will be able to send stuff to the

write-end of the pipe, and the parent will get it off the read-end. Like this®:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>
i nt mai n(voi d)
{
int pfds[2];
char buf[30];
pi pe(pfds) ;
if (Ifork()) {
printf(" CHLD: witing to the pipe\n");
wite(pfds[1l], "test", 5);
printf(" CH LD exiting\n");
exi t(0);
} else {
printf("PARENT: reading from pipe\n");
read(pfds[0], buf, 5);
printf("PARENT: read \"%\"\n", buf);
wai t (NULL) ;
}
return O;
}

Please note, your programs should have alot more error checking than mine do. | leave it
out on occasion to help keep things clear.

Anyway, this example isjust like the previous one, except now we f or k() of anew
process and have it write to the pipe, while the parent reads from it. The resultant output will be
something similar to the following:

PARENT: reading from pi pe
CH LD: witing to the pipe

CHI LD: exiting
PARENT: read "test"

In this case, the parent tried to read from the pipe before the child writesto it. When this
happens, the parent is said to block, or sleep, until data arrives to be read. It seems that the
parent tried to read, went to sleep, the child wrote and exited, and the parent woke up and read
the data.

6. http://beej.us/ gui de/ bgi pc/ exanpl es/ pi pe2.c

http://beej.us/guide/bgipc/examples/pipe2.c

Beej's Guide to Unix IPC 12

Hurrah!! Y ou've just don't some interprocess communication! That was dreadfully simple,
huh? I'll bet you are still thinking that there aren't many uses for pi pe() and, well, you're
probably right. The other forms of 1PC are generally more useful and are often more exotic.

4.3. The search for Pipe as we know it

In an effort to make you think that pipes are actually reasonable beasts, I'll give you an
example of using pi pe() inamore familiar situation. The challenge: implement “Is | wc -I” in
C.

This requires usage of a couple more functions you may never have heard of: exec() and
dup() . Theexec() family of functions replaces the currently running process with whichever
oneis passed to exec() . Thisisthe function that we will useto runIsand wc -I. dup() takes
an open file descriptor and makes a clone (a duplicate) of it. Thisis how we will connect the
standard output of the Is to the standard input of wc. See, stdout of Is flows into the pipe, and the
stdin of wc flows in from the pipe. The pipefitsright there in the middle!

Anyway, hereisthe code”:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>

i nt mai n(voi d)
{
int pfds[2];

pi pe(pfds);

if (1fork()) {
cl ose(1); /* close nornmal stdout */
dup(pfds[1]); /* make stdout sanme as pfds[1] */
cl ose(pfds[0]); /* we don't need this */

execl p("Is", "Is", NULL);
} else {
cl ose(0); /* close normal stdin */

dup(pfds[0]); /* make stdin sane as pfds[0] */
cl ose(pfds[1]); /* we don't need this */
execl p("we", "wc", "-I", NULL);

}

return O;

I'm going to make another note about the cl ose() /dup() combination since it's pretty
weird. cl ose(1) freesup file descriptor 1 (standard output). dup(pf ds[1]) makes a copy of
the write-end of the pipe in the first available file descriptor, which is“1”, since we just closed
that. In this way, anything that Is writes to standard output (file descriptor 1) will instead go to
pf ds[1] (thewrite end of the pipe). The wc section of code works the same way, except in
reverse.

4.4. Summary

There aren't many of these for such asimpletopic. In fact, there are nearly just about none.
Probably the best use for pipesis the one you're most accustomed to: sending the standard
output of one command to the standard input of another. For other uses, it's pretty limiting and
there are often other I1PC techniques that work better.

7.http://beej.us/ gui de/ bgi pc/ exanpl es/ pi pe3. c

http://beej.us/guide/bgipc/examples/pipe3.c

5. FIFOs

A FIFO (“First In, First Out”, pronounced “ Fy-Foh”) is sometimes known as a named
pipe. That is, it's like a pipe, except that it has aname! In this case, the name is that of afile that
multiple processes can open() and read and write to.

This latter aspect of FIFOsis designed to let them get around one of the shortcomings of
normal pipes: you can't grab one end of a normal pipe that was created by an unrelated process.
Seg, if | run two individual copies of a program, they can both call pi pe() al they want and
still not be able to speak to one another. (This is because you must pi pe() , thenfork() to
get a child process that can communicate to the parent viathe pipe.) With FIFOs, though, each
unrelated process can simply open() the pipe and transfer data through it.

5.1. A New FIFO is Born

Since the FIFO is actualy afile on disk, you have to do some fancy-schmancy stuff to
createit. It's not that hard. Y ou just haveto call nknod() with the proper arguments. Hereisa
nknod() call that creates a FIFO:

‘nknod("rryfifo", SIFIFO| 0644 , 0); |

In the above example, the FIFO file will be called “nyf i f o”. The second argument is the
creation mode, which isused to tell nknod() to make aFIFO (the S_I FI FOpart of the OR) and
Sets access permissions to that file (octal 644, or rw-r - - r - -) which can also be set by ORing
together macros from sys/ st at . h. This permission isjust like the one you'd set using the
chmod command. Finally, a device number is passed. Thisisignored when creating a FIFO, so
you can put anything you want in there.

(An aside: aFIFO can also be created from the command line using the Unix mknod
command.)

5.2. Producers and Consumers

Once the FIFO has been created, a process can start up and open it for reading or writing
using the standard open() system call.

Since the processis easier to understand once you get some code in your belly, I'll present
here two programs which will send data through a FIFO. Oneisspeak. ¢ which sends data
through the FIFO, and the other iscalled t i ck. c, asit sucks data out of the FIFO.

Hereisspeak. ¢ *
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>
#i ncl ude <fcntl. h>
#i ncl ude <sys/types. h>

#i ncl ude <sys/stat.h>
#i ncl ude <uni std. h>

#define FI FO_NAVE "aneri can_mai d"

i nt mai n(voi d)
{
char s[300];
int num fd;

nknod(FI FO NAVE, S IFIFO | 0666, 0);

printf("waiting for readers...\n");
8. http://beej.us/guidel/bgipc/exanpl es/ speak. c

13

http://beej.us/guide/bgipc/examples/speak.c

Beej's Guide to Unix IPC

14

fd = open(FI FO_NAME, O WRONLY)
printf("got a reader--type sone stuff\n");

while (gets(s), !feof(stdin)) {

if ((num= wite(fd, s, strlen(s))) == -1)
perror("wite");
el se
printf("speak: wote % bytes\n", num;
}
return O;

What speak does is create the FIFO, then try to open() it. Now, what will happen is that

the open() call will block until some other process opens the other end of the pipe for reading.
(Thereisaway around this—see O_NDELAY, below.) That processisti ck. ¢ °, shown here:

{

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>
#incl ude <fcntl. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat.h>
#i ncl ude <uni std. h>

#defi ne FI FO_ NAME "aneri can_mai d"

i nt mai n(voi d)

char s[300];
int num fd;

nmknod(FI FO_NAME, S | FIFO | 0666, 0)
printf("waiting for witers...\n");

fd = open(Fl FO_NAVE, O RDONLY);
printf("got a witer\n");

do {
if ((num= read(fd, s, 300)) == -1)
perror("read");
el se {
s[nunm = "\0';

printf("tick: read % bytes: \"9%\"\n", num s);
}
} while (num> 0);

return O;

Like speak. c, tick will block on the open() if thereis no onewriting to the FIFO. As

soon as someone opens the FIFO for writing, tick will spring to life.

Try it! Start speak and it will block until you start tick in another window. (Conversely, if

you start tick, it will block until you start speak in another window.) Type away in the speak
window and tick will suck it all up.

Now, break out of speak. Notice what happens: ther ead() intick returns0, signifying

EOF. In thisway, the reader can tell when all writers have closed their connection to the FIFO.
“What?’ you ask “ There can be multiple writers to the same pipe?’ Sure! That can be very
useful, you know. Perhaps I'll show you later in the document how this can be exploited.

9. http://beej.us/guidel/bgipc/exanples/tick.c

http://beej.us/guide/bgipc/examples/tick.c

Beej's Guide to Unix IPC 15

But for now, lets finish this topic by seeing what happens when you break out of tick
while speak isrunning. “Broken Pipe’! What does this mean? Well, what has happened is that
when all readers for a FIFO close and the writer is still open, the writer will receiver the signal
SIGPIPE the next timeit triestowr i t e() . The default signal handler for this signal prints
“Broken Pipe’ and exits. Of course, you can handle this more gracefully by catching SIGPIPE
through the si gnal () call.

Finally, what happens if you have multiple readers? Well, strange things happen.
Sometimes one of the readers get everything. Sometimes it alternates between readers. Why do
you want to have multiple readers, anyway?

5.3. O NDELAY! I'm UNSTOPPABLE!

Earlier, | mentioned that you could get around the blocking open() call if there was no
corresponding reader or writer. The way to do thisisto call open() with the O NDELAY flag set
in the mode argument:

‘fd = open(Fl FO NAME, O RDONLY | O NDELAY): |

Thiswill cause open() to return - 1 if there are no processes that have the file open for
reading.

Likewise, you can open the reader process using the O_NDELAY flag, but this has a different
effect: all attemptstor ead() from the pipewill simply return 0 bytesread if there is no data
inthe pipe. (That is, ther ead() will nolonger block until thereis some datain the pipe.) Note
that you can no longer tell if r ead() isreturning 0 because there is no datain the pipe, or
because the writer has exited. Thisis the price of power, but my suggestion isto try to stick with
blocking whenever possible.

5.4. Multiple Writers—How do | multiplex all these?

L ets say you have a pipe with one reader and one writer connected to it. There's no problem
for the reader, since there is only one place its data could be coming from (namely, the one
writer.) Suddenly another writer leaps snarling from the shadows! Without provocation, it
begins spewing random data into the pipe! How is the poor reader going to sort the data from
the two writers?

WEell, there are lots of ways, and they all depend on what kind of data you are passing
back and forth. One of the simpliest ways would occur if al the writers were sending the same
amount of data every time (lets say, 1024 bytes). Then the reader could read 1024 bytes at a
time and be assured that it's getting a single packet (as opposed to, say 512 bytes from one
writer and 512 from the other.) Still, though, there is no way to tell which writer sent which
packet.

One of the best solutions to thisis for each writer to use (or prepend to) the first couple
bytes of the packet for some kind of unique identifier. The reader can pick up thisidentifier and
determine which writer sent the packet. This“id” can be thought of as a petite packet header.

Allowing for a packet header gives us alot more flexibility with what we can send through
apipe. For instance, you could also add alength field that tells the reader how many bytes of
data accompany the header. A sample data structure to hold one of these packets might be:

typedef struct {
short id;
short | ength;
char data[1024]
} PACKET;

By transmitting a packet with structure similar to the above, you could have an arbitrary
number of writers sending packets of varying lengths. The reader will be ableto sort it all out
sinceit getsthe “id” of the source writer and the length of the packet.

Beej's Guide to Unix IPC 16

5.5. Concluding Notes

Having the name of the pipe right there on disk sure makes it easier, doesn't it? Unrelated
processes can communicate via pipes! (Thisis an ability you will find yourself wishing for if
you use normal pipesfor too long.) Still, though, the functionality of pipes might not be quite
what you need for your applications. Message queues might be more your speed, if your system
supports them.

6. File Locking

File locking provides a very simple yet incredibly useful mechanism for coordinating file
accesses. Before | begin to lay out the details, let me fill you in on some file locking secrets:

There are two types of 1ocking mechanisms: mandatory and advisory. Mandatory systems
will actually preventread() sandwr i t e() sto file. Several Unix systems support them.
Nevertheless, I'm going to ignore them throughout this document, preferring instead to talk
solely about advisory locks. With an advisory lock system, processes can still read and write
from afile whileit'slocked. Useless? Not quite, since thereis away for a process to check for
the existence of alock before aread or write. See, it'sakind of cooperative locking system. This
iseasily sufficient for almost all cases where file locking is necessary.

Since that's out of the way, whenever | refer to alock from now on in this document, I'm
referring to advisory locks. So there.

Now, let me break down the concept of alock alittle bit more. There are two types of
(advisory!) locks: read locks and write locks (also referred to as shared locks and exclusive
locks, respectively.) The way read locks work is that they don't interfere with other read locks.
For instance, multiple processes can have afile locked for reading at the same. However,
when a process has an write lock on afile, no other process can activate either aread or write
lock until it is relinquished. One easy way to think of thisisthat there can be multiple readers
simultaneously, but there can only be one writer at atime.

One last thing before beginning: there are many waysto lock filesin Unix systems.
System V likes| ockf (), which, personaly, | think sucks. Better systems support f | ock()
which offers better control over the lock, but still lacks in certain ways. For portability and for
completeness, I'll be talking about how to lock filesusing f cnt | () . | encourage you, though, to
use one of the higher-level f | ock() -style functions if it suits your needs, but | want to portably
demonstrate the full range of power you have at your fingertips. (If your System V Unix doesn't
support the POSIX-y fcnt | (), you'll have to reconcile the following information with your
| ockf () man page.)

6.1. Setting a lock

Thefcnt 1 () function doesjust about everything on the planet, but we'll just useit for
file locking. Setting the lock consists of filling out ast ruct fl ock (declaredinfcntl . h)
that describes the type of lock needed, open() ing the file with the matching mode, and calling
fcnt | () with the proper arguments, comme ¢a:

struct flock fl;

int fd;

fl.l _type = F_WRLCK; /* F_RDLCK, F WRLCK, F_UNLCK */
fl.l _whence = SEEK SET; /* SEEK SET, SEEK CUR, SEEK END */
fl.l _start = 0; /[* Ofset from| _whence */
fl.l _len = 0; /* length, 0 = to ECF */
fl.l_pid = getpid(); /* our PID */

fd = open("filenane", O WRONLY);

fentl(fd, F_SETLKW &fl); /* F_GETLK, F_SETLK, F_SETLKW*/

What just happened? Let's start withthest ruct fl ock sincethefieldsin it are used to
describe the locking action taking place. Here are some field definitions:

| _type

17

Beej's Guide to Unix IPC 18

Thisiswhere you signify the type of lock you want to set. It's either
F_RDLCK, F_WRLCK, or F_UNLCK if you want to set aread lock, write lock,
or clear the lock, respectively.

| _whence Thisfield determineswherethel _st art field starts from (it's like an offset
for the offset). It can be either SEEK_SET, SEEK _CUR, or SEEK_END, for
beginning of file, current file position, or end of file.

| start Thisisthe starting offset in bytes of the lock, relativeto | _whence.

| len Thisisthe length of the lock region in bytes (which startsfrom| _st art
whichisrelativetol whence.

| pid The process ID of the process dealing with the lock. Use get pi d() to get
this.

In our example, we told it make alock of type F_WRLCK (awrite lock), starting relative
to SEEK_SET (the beginning of thefile), offset 0, length 0 (a zero value means “lock to
end-of-file), with the PID set to get pi d() .

The next step isto open() thefile sincef | ock() needs afile descriptor of the file that's
being locked. Note that when you open the file, you need to open it in the same mode as you
have specified in the lock, as shown in the table, below. If you open the file in the wrong mode
for agiven lock type, open() will return EBADF.

| _type mode
F_RDLCK O _RDONLY or O RDVR
F_WRLCK O WRONLY or O RDVR

Finaly, thecall tofcnt | () actualy sets, clears, or gets the lock. See, the second argument
(thecrmd) tofcntl () tellsit what to do with the datapassed to it inthest ruct f1 ock. The
following list summarizes what each f cnt | () cnd does:

F_SETLKW Thisargument tellsf cnt | () to attempt to obtain the lock requested in the
struct fl ock structure. If the lock cannot be obtained (since someone else has
it locked already), f cnt | () will wait (block) until the lock has cleared, then will
setititself. Thisisavery useful command. | useit al the time.

F_SETLK Thisfunction is amost identical to F_SETLKW The only difference is that this
one will not wait if it cannot obtain alock. It will return immediately with - 1.
This function can be used to clear alock by setting thel _t ype fieldin the
struct flock toF_UNLCK.

F_GETLK If you want to only check to seeif thereisalock, but don't want to set one, you
can use this command. It looks through all the file locks until it finds one that
conflicts with the lock you specified inthest ruct f1 ock. It then copies the
conflicting lock's information into the st r uct and returnsit to you. If it can't
find aconflicting lock, f cnt | () returnsthest ruct asyou passed it, except it
setsthel _type fieldto F_UNLCK.

In our above example, we call f cnt | () with F_SETLKWas the argument, so it blocks until
it can set the lock, then setsit and continues.

Beej's Guide to Unix IPC 19

6.2. Clearing a lock

Whew! After all the locking stuff up there, it's time for something easy: unlocking!
Actualy, thisis apiece of cake in comparison. I'll just reuse that first example and add the code
to unlock it at the end:

struct flock fl;

int fd;

fl.l _type = F_WRLCK; /* F_RDLCK, F WRLCK, F_UNLCK */
fl.l _whence = SEEK SET; /* SEEK SET, SEEK CUR, SEEK END */
fl.l_start = 0; [* Ofset from| _whence */
fl.l _len = 0; /* length, 0 = to ECF */
fl.l_pid = getpid(); /* our PID */

fd = open("fil ename”, O WRONLY); /* get the file descriptor */
fentl (fd, F_SETLKW &fl); /* set the lock, waiting if necessary */

fl.l_type = F_UNLCK; /* tell it to unlock the region */
fentl (fd, F_SETLK, &fl); /* set the region to unl ocked */

Now, | left the old locking code in there for high contrast, but you can tell that | just
changed the| _t ype field to F_UNLCK (leaving the others completely unchanged!) and called
fcntl () with F_SETLK asthe command. Easy!

6.3. A demo program

Here, | will include a demo program, | ockdeno. c, that waits for the user to hit return,
then locks its own source, waits for another return, then unlocksit. By running this program in
two (or more) windows, you can see how programs interact while waiting for locks.

Basically, usage isthis: if you run lockdemo with no command line arguments, it triesto
grab awrite lock (F_WRLCK) onits source (I ockdeno. c). If you start it with any command line
arguments at al, it triesto get aread lock (F_RDLCK) onit.

Here's the source™:
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>

#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

int main(int argc, char *argv[])
{
/* | _type | _whence | _start | _len | _pid */
struct flock fl = {F_WRLCK, SEEK SET, 0, o, 0 };
int fd;

fl.l _pid = getpid();

if (argc > 1)
fl.l_type = F_RDLCK

if ((fd = open("lockdeno.c", O RDWR)) == -1) {
perror("open");
exit(1);

}

printf("Press <RETURN> to try to get lock: ");
getchar () ;

10. htt p: // beej . us/ gui de/ bgi pc/ exanpl es/ | ockdenp. ¢

http://beej.us/guide/bgipc/examples/lockdemo.c

Beej's Guide to Unix IPC 20

printf("Trying to get lock...");

if (fentl (fd, F_SETLKW &fl) == -1) {
perror("fcntl");
exit(1);

}

printf("got |ock\n");

printf("Press <RETURN> to rel ease | ock: ");
getchar () ;

fl.l _type = F_UNLCK; /* set to unlock sane region */

if (fentl(fd, F_SETLK, &fl) == -1) {
perror("fcntl");
exit(1);

}

printf("Unl ocked.\n");
cl ose(fd);

return O;

Compile that puppy up and start messing with it in a couple windows. Notice that when
one lockdemo has aread lock, other instances of the program can get their own read locks with
no problem. It's only when awrite lock is obtained that other processes can't get alock of any
kind.

Another thing to notice isthat you can't get awrite lock if there are any read locks on the
same region of the file. The process waiting to get the write lock will wait until all the read locks
are cleared. One upshot of thisisthat you can keep piling on read locks (because aread lock
doesn't stop other processes from getting read locks) and any processes waiting for awrite lock
will sit there and starve. There isn't a rule anywhere that keeps you from adding more read locks
if there isaprocess waiting for awrite lock. Y ou must be careful.

Practically, though, you will probably mostly be using write locks to guarantee exclusive
access to afile for a short amount of time while it's being updated; that is the most common
use of locks asfar as I've seen. And I've seen them all...well, I've seen one...asmall one...a
picture—well, I've heard about them.

6.4. Summary

Locks rule. Sometimes, though, you might need more control over your processesin a
producer-consumer situation. For this reason, if no other, you should see the document on
System V semaphoresif your system supports such a beast. They provide a more extensive and
at least equally function equivalent to file locks.

/. Message Queues

Those people who brought us System V have seen fit to include some |PC goodies that
have been implemented on various platforms (including Linux, of course.) This document
describes the usage and functionality of the extremely groovy System V Message Queues!

Asusual, | want to spew some overview at you before getting into the nitty-gritty.

A message queue works kind of like a FIFO, but supports some additional functionality.
Generally, see, messages are taken off the queue in the order they are put on. Specificaly,
however, there are ways to pull certain messages out of the queue before they reach the front.
It'slike cutting in line. (Incidentally, don't try to cut in line while visiting the Great America
amusement park in Silicon Valley, as you can be arrested for it. They take cutting very seriously
down there.)

In terms of usage, a process can create a new message queue, or it can connect to an
existing one. In this, the latter, way two processes can exchange information through the same
message queue. Score.

One more thing about System V IPC: when you create a message queue, it doesn't go
away until you destroy it. All the processes that have ever used it can quit, but the queue will
still exist. A good practice isto use the ipcs command to check if any of your unused message
gueues are just floating around out there. Y ou can destroy them with the ipcrm command,
which is preferable to getting a visit from the sysadmin telling you that you've grabbed every
available message queue on the system.

7.1. Where's my queue?

Let's get something going! First of al, you want to connect to aqueue, or createit if it
doesn't exist. The call to accomplish thisisthensgget () system call:
‘int nsgget (key_t key, int nsgflg); |

msgget () returns the message queue ID on success, or - 1 on failure (and it setser r no, of
course.)

The arguments are alittle weird, but can be understood with alittle brow-beating. The first,
key isasystem-wide unique identifier describing the queue you want to connect to (or create).
Every other process that wants to connect to this queue will have to use the samekey.

The other argument, msgf | g tellsmsgget () what to do with queue in question. To create
aqueue, thisfield must be set equal to | PC_CREAT bit-wise OR'd with the permissions for this
gueue. (The queue permissions are the same as standard file permissions—queues take on the
user-id and group-id of the program that created them.)

A sample call isgiven in the following section.

7.2. “Are you the Key Master?”

What about thiskey nonsense? How do we create one? Well, sincethetypekey _t is
actually just al ong, you can use any number you want. But what if you hard-code the number
and some other unrelated program hardcodes the same humber but wants another queue? The
solution isto usethef t ok() function which generates a key from two arguments:

‘key_t ftok(const char *path, int id); |

Ok, thisis getting weird. Basically, pat h just hasto be afile that this process can read.
The other argument, i d isusually just set to some arbitrary char, like'A'. Theft ok() function
uses information about the named file (like inode number, etc.) and thei d to generate a
probably-unique key for nsgget () . Programs that want to use the same queue must generate
the same key, so they must pass the same parametersto f t ok() .

21

Beej's Guide to Unix IPC 22

Finally, it'stime to make the call:

#i ncl ude <sys/msg. h>
key = ftok("/hone/beej/sonefile", 'b');
neqi d = nsgget (key, 0666 | | PC_CREAT);

In the above example, | set the permissions on the queue to 666 (or r w- r w-r w, if that
makes more sense to you). And now we have msqi d which will be used to send and receive
messages from the queue.

7.3. Sending to the queue

Once you've connected to the message queue using nsgget () , you are ready to send and
receive messages. First, the sending:

Each message is made up of two parts, which are defined in the template structure st r uct
msgbuf , asdefined insys/ nsg. h:
struct nsgbuf {

| ong ntype;
char ntext[1];

Thefield nt ype isused later when retrieving messages from the queue, and can be set to
any positive number. nt ext isthe datathiswill be added to the queue.

“What?! Y ou can only put one byte arrays onto a message queue? Worthless!!” Well, not
exactly. You can use any structure you want to put messages on the queue, as long as the first
element isalong. For instance, we could use this structure to store al kinds of goodies:

struct pirate_msgbuf {
long mype; /* nust be positive */
struct pirate_info {
char name[30] ;
char ship_type
int notoriety;
int cruelty;
i nt booty_val ue;
} info;

Ok, so how do we pass this information to a message queue? The answer is simple, my
friends: just usemsgsnd() :
int msgsnd(int nsqgid, const void *nsgp,
size_t msgsz, int nsgflg);

msqi d isthe message queue identifier returned by nsgget () . The pointer nsgp isa
pointer to the data you want to put on the queue. nsgsz isthe sizein bytes of the datato add to
the queue (not counting the size of the nt ype member). Finally, nsgf | g alowsyou to set some
optional flag parameters, which we'll ignore for now by setting it to 0.
When to get the size of the data to send, you can do afew things:

1. Do likel did, above, and declare a substructure right after nt ype with the elementsin
it. Usesi zeof tofind how large the datais. (The examples, below, use this technique
with the substructure st r uct pirate_i nfo.)

2. Declare abig array right after nt ype, and use si zeof onthe array. Pack the array
with the data you need.

3. If you have a number of elements after nt ype, the size of the dataisthe si zeof the
entirest ruct minusthe of f set of () the member right after theinitial | ong nt ype.

Beej's Guide to Unix IPC 23

struct cheese_nsgbhuf {
| ong ntype;
char nane[20] ;
int type;
fl oat yumm ness;

}s
/* calculate the size of the data to send: */

int size = sizeof(struct cheese_msgbuf) -
of f set of (struct cheese_nsgbuf, nane);

Using of f set of () should handle any padding the compiler might decide to inject
after nt ype.)

And here is a code snippet that shows one of our pirate structures being added to the
message queue:

#i ncl ude <sys/nsg. h>
#i ncl ude <stddef. h>

key t key;
int neqid;
struct pirate_msgbuf pnmb = {2, { "L'donais", 'S, 80, 10, 12035 } };

key = ftok("/hone/beej/sonefile", 'b');
nmsqgi d = nsgget (key, 0666 | | PC_CREAT);

/* stick himon the queue */
nsgsnd(nsqgi d, &onb, sizeof(struct pirate_info), 0);

Aside from remembering to error-check the return values from all these functions, this
isal thereistoit. Oh, yeah: note that | arbitrarily set the nt ype field to 2 up there. That'll be
important in the next section.

7.4. Receiving from the queue

Now that we have the dreaded pirate Francis L'Olonais™ stuck in our message queue, how
do we get him out? As you can imagine, there is a counterpart to nsgsnd() : itisnsgrcv() .
How imaginative.

A call tomsgr cv() that would do it looks something like this:

#i ncl ude <sys/ nsg. h>
#i ncl ude <stddef. h>

key t key;
i nt neqid;
struct pirate_nsgbuf pnb; /* where L' onais is to be kept */

key = ftok("/hone/beej/sonefile", 'b');
nsqi d = nsgget (key, 0666 | | PC_CREAT);

/* get himoff the queue! */
nsgrcv(nsqgi d, &nb, sizeof(struct pirate_info), 2, 0);

There is something new to noteinthensgr cv() call: the 2! What does it mean? Here's the
synopsis of the call:

int nsgrcv(int neqgid, void *nsgp, Size_t nsgsz,
I ong nmegtyp, int nmsgflg);

11.http://beej.us/pirates/pirate_view php?file=lol onais.jpg

http://beej.us/pirates/pirate_view.php?file=lolonais.jpg

Beej's Guide to Unix IPC 24

The 2 we specified in the call isthe requested nsgt yp. Recall that we set the nt ype
arbitrarily to 2 inthe nsgsnd() section of this document, so that will be the one that is retrieved
from the queue.

Actualy, the behavior of nsgr cv() can be modified drastically by choosing ansgt yp that
is positive, negative, or zero:

megt yp Effect on msgrcv()

Zero Retrieve the next message on the queue, regardless of itsnt ype.
Positive Get the next message with an nt ype equal to the specified nsgt yp.
Negative Retrieve the first message on the queue whose nt ype field isless than or

egual to the absolute value of the msgt yp argument.

So, what will often be the case is that you'll simply want the next message on the queue, no
matter what nt ype itis. Assuch, you'd set the msgt yp parameter to 0.

7.5. Destroying a message queue

There comes a time when you have to destroy a message queue. Like | said before, they
will stick around until you explicitly remove them; it isimportant that you do this so you don't
waste system resources. Ok, so you've been using this message queue all day, and it's getting
old. You want to obliterate it. There are two ways:

1. Usethe Unix command ipcsto get alist of defined message queues, then use the
command ipcrm to delete the queue.

2. Writeaprogram to do it for you.

Often, the latter choice is the most appropriate, since you might want your program to
clean up the queue at some time or another. To do this requires the introduction of another
function: msgct | ().

The synopsisof nsgct | () is:
int msgctl (int msqid, int cnd,

struct msqgi d_ds *buf);

Of course, nsqi d isthe queue identifier obtained from nsgget () . The important argument
iscnd which tellsmsgct | () how to behave. It can be avariety of things, but we're only going
to talk about | PC_RM D, which is used to remove the message queue. The buf argument can be
Set to NULL for the purposes of | PC_RM D.

Say that we have the queue we created above to hold the pirates. Y ou can destroy that
gueue by issuing the following call:

#i ncl ude <sys/ nsg. h>

ﬁsgctl (msqgid, PC_RM D, NULL);
And the message queue is no more.

7.6. Sample programs, anyone?

For the sake of completeness, I'll include a brace of programs that will communicate using
message queues. Thefirst, ki r k. ¢ adds messages to the message queue, and spock. c retrieves
them.

Here is the source for kirk.c*:

#i ncl ude <stdio. h> |
12.http:// beej . us/ gui de/ bgi pc/ exanpl es/ kirk.c

http://beej.us/guide/bgipc/examples/kirk.c

Beej's Guide to Unix IPC

#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/ msg. h>
struct my_msgbuf {
| ong ntype;
char ntext[200];
)i
i nt mai n(voi d)
{
struct my_nmsgbuf buf;
int meqid;
key t key;
if ((key = ftok("kirk.c", "B)) == -1) {
perror("ftok");
exit(1);
}
if ((msqgid = nsgget (key, 0644 | |PC _CREAT)) == -1) {
perror (" msgget");
exit(1);
}
printf("Enter lines of text, "Dto quit:\n");
buf .mype = 1; /* we don't really care in this case */
whi | e(fgets(buf.ntext, sizeof buf.nmext, stdin) !'= NULL) {
int len = strlen(buf.ntext);
[* ditch newine at end, if it exists */
if (buf.mext[len-1] == '\n") buf.ntext[len-1] = "\0'
if (msgsnd(nsqid, &buf, len+tl, 0) == -1) /* +1 for "\0" */
perror ("nsgsnd");
}
if (megctl(msqid, IPCRMD, NULL) == -1) {
perror("msgctl");
exit(1);
}
return O;
}

25

Theway kirk worksisthat it allows you to enter lines of text. Each lineis bundled into a

message and added to the message queue. The message queue is then read by spock.
Here is the source for spock.c™:

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <errno. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/ nsg. h>

struct my_msgbuf {
| ong mtype;

13.http:// beej . us/ gui de/ bgi pc/ exanpl es/ spock. ¢

http://beej.us/guide/bgipc/examples/spock.c

Beej's Guide to Unix IPC 26

char ntext[200];
Ji 5

i nt mai n(voi d)

{
struct my_nmsgbuf buf;

int neqid;

key t key;

if ((key = ftok("kirk.c", "B)) == -1) { [/* sanme key as kirk.c */
perror("ftok");
exit(1);

}

if ((msqgid = nmsgget (key, 0644)) == -1) { /* connect to the queue */
perror (" msgget");
exit(1);

}

printf("spock: ready to receive nessages, captain.\n");

for(;;) { /* Spock never quits! */

if (megrcv(nsqid, &buf, sizeof(buf.nmext), 0, 0) == -1) {
perror ("msgrcv");
exit(1);
}
printf("spock: \"%\"\n", buf.ntext);
}
return O;

Notice that spock, inthe call to nsgget () , doesn't include the | PC_CREAT option. We've
left it up to kirk to create the message queue, and spock will return an error if he hasn't done so.

Notice what happens when you're running both in separate windows and you kill one or the
other. Also try running two copies of kirk or two copies of spock to get an idea of what happens
when you have two readers or two writers. Another interesting demonstration is to run kirk,
enter a bunch of messages, then run spock and see it retrieve all the messages in one swoop. Just
messing around with these toy programs will help you gain an understanding of what isreally
going on.

7.7. Summary

There is more to message queues than this short tutorial can present. Be sureto look in the
man pages to see what else you can do, especially in the areaof nsgct | () . Also, there are more
options you can pass to other functionsto control how nsgsnd() and nsgr cv() handleif the
queueis full or empty, respectively.

8. Semaphores

Remember file locking? Well, semaphores can be thought of as really generic advisory
locking mechanisms. Y ou can use them to control access to files, shared memory, and, well,
just about anything you want. The basic functionality of a semaphore isthat you can either set
it, check it, or wait until it clears then set it (“test-n-set”). No matter how complex the stuff that
follows gets, remember those three operations.

This document will provide an overview of semaphore functionality, and will end with a
program that uses semaphores to control accessto afile. (Thistask, admittedly, could easily
be handled with file locking, but it makes a good example sinceit's easier to wrap your head
around than, say, shared memory.)

8.1. Grabbing some semaphores

With System V IPC, you don't grab single semaphores; you grab sets of semaphores. Y ou
can, of course, grab a semaphore set that only has one semaphorein it, but the point isyou can
have awhole slew of semaphores just by creating a single semaphore set.

How do you create the semaphore set? It's done with acall to senget (), which returns the
semaphore id (hereafter referred to asthe seni d):

#i ncl ude <sys/sem h>

int senget(key_t key, int nsenms, int senflg);

What'sthe key? It'saunique identifier that is used by different processes to identify this
semaphore set. (Thiskey will be generated using f t ok () , described in the Message Queues
section.)

The next argument, nsens, is (you guessed it!) the number of semaphoresin this
semaphore set. The exact number is system dependent, but it's probably between 500 and 2000.
If you're needing more (greedy wretch!), just get another semaphore set.

Finally, there'sthe senf | g argument. Thistellssenget () what the permissions should
be on the new semaphore set, whether you're creating a new set or just want to connect to an
existing one, and other things that you can look up. For creating a new set, you can bit-wise or
the access permissions with | PC_CREAT.

Here's an example call that generatesthe key with f t ok() and creates a 10 semaphore set,
with 666 (r w- r w- r w-) permissions:

#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>

key t key;
int sem d;

key = ftok("/hone/beej/sonefile", 'E);
sem d = senget (key, 10, 0666 | |PC_CREAT);

Congrats! Y ou've created a new semaphore set! After running the program you can check it
out with the ipcs command. (Don't forget to remove it when you're done with it with ipcrm!)

Wait! Warning! jAdvertencia! jNo pongas las manos en la tolva! (That's the only Spanish |
learned while working at Pizza Hut in 1990. It was printed on the dough roller.) Look here:

When you first create some semaphores, they're al uninitialized; it takes another call to
mark them as free (namely to senop() or senct | () —see the following sections.) What does
this mean? Well, it means that creation of a semaphore is not atomic (in other words, it'snot a
one-step process). If two processes are trying to create, initialize, and use a semaphore at the
same time, a race condition might develop.

27

Beej's Guide to Unix IPC 28

One way to get around this difficulty is by having a single init process that creates and
initializes the semaphore long before the main processes begin to run. The main processes just
access it, but never create nor destroy it.

Stevens refers to this problem as the semaphore's “fatal flaw”. He solvesit by creating
the semaphore set with the | PC_EXCL flag. If process 1 createsit first, process 2 will return
an error on the call (with err no set to EEXI ST.) At that point, process 2 will have to wait
until the semaphoreisinitialized by process 1. How can it tell? Turns out, it can repeatedly
call senct | () withthel PC_STAT flag, and look at the sem ot i me member of the returned
struct sem d_ds structure. If that's non-zero, it means process 1 has performed an operation
on the semaphore with senop() , presumably to initialize it.

For an example of this, see the demonstration program sendeno. c, below, inwhich |
generally reimplement Stevens' code™.

In the meantime, let's hop to the next section and take alook at how to initialize our
freshly-minted semaphores.

8.2. Controlling your semaphores with senct| ()

Once you have created your semaphore sets, you have to initialize them to a positive value
to show that the resource is available to use. The function senct | () alowsyou to do atomic
value changes to individual semaphores or complete sets of semaphores.

int senctl (int senmid, int semum
int cnmd, ... /*arg*/);
semi d isthe semaphore set id that you get from your call to senget () , earlier. sermum
isthe ID of the semaphore that you wish to manipulate the value of. cnd iswhat you wish to do
with the semaphore in question. The last “argument”, “ar g”, if required, needsto beauni on
semun, which will be defined by you in your code to be one of these:

uni on semun {

int val; /* used for SETVAL only */
struct semd_ds *buf; /* used for |PC_STAT and | PC _SET */
ushort *array; /* used for GETALL and SETALL */

The various fieldsin the uni on senun are used depending on the value of the cnd
parameter to set ct | () (apartial list follows—see your local man page for more):

crd Effect

SETVAL Set the value of the specified semaphore to the value in theval member of
the passed-in uni on senun.

GETVAL Return the value of the given semaphore.

SETALL Set the values of all the semaphoresin the set to the valuesin the array

pointed to by the ar r ay member of the passed-in uni on senun. The
semumparameter tosenct | () isn't used.

GETALL Gets the values of al the semaphoresin the set and stores them in the array
pointed to by the ar r ay member of the passed-in uni on senun. The
semumparameter tosenct | () isn't used.

| PC_RM D Remove the specified semaphore set from the system. The sermum
parameter isignored.
| PC_STAT L oad status information about the semaphore set into the st r uct

seni d_ds structure pointed to by the buf member of theuni on senun.

14.htt p: // www. kohal a. conf st art/ unpv22e/ unpv22e. ht n

http://www.kohala.com/start/unpv22e/unpv22e.html

Beej's Guide to Unix IPC 29

For the curious, here are the contents of thest ruct semi d_ds that isused in the uni on
semun:

struct sem d_ds {
struct ipc_permsemperny /* Omership and perm ssions
time_t semotinme; /* Last senop tinme */
time_t semctinme; /* Last change tine */
unsi gned short semnsens; /* No. of semaphores in set */

WEell use that sem ot i me member later on when we write our i ni t sen() inthe sample
code, below.

8.3. senop() : Atomic power!
All operations that set, get, or test-n-set a semaphore use the senop() system call. This

system call is general purpose, and its functionality is dictated by a structure that is passed to it,
struct semnbuf:

[* Warning! Menbers might not be in this order! */

struct senmbuf {
ushort sem num
short sem op;
short semflg

Of course, sem numisthe number of the semaphore in the set that you want to manipulate.
Then, sem op iswhat you want to do with that semaphore. This takes on different meanings,
depending on whether sem op is positive, negative, or zero, as shown in the following table:

sem op What happens

Negative Allocate resources. Block the calling process until the value of the semaphoreis
greater than or equal to the absolute value of sem op. (That is, wait until enough
resources have been freed by other processes for this one to allocate.) Then add
(effectively subtract, since it's negative) the value of sem op to the semaphore's

value.
Positive Release resources. The value of sem op is added to the semaphore's value.
Zero This process will wait until the semaphore in question reaches 0.

S0, basically, what you doisload up ast ruct senmbuf with whatever values you want,
then call senop(), likethis:

int senmop(int semd, struct senbuf *sops,
unsi gned int nsops);

The seni d argument is the number obtained from the call to senget () . Next issops,
which isapointer tothest ruct senbuf that you filled with your semaphore commands. If
you want, though, you can make an array of st ruct senbuf sin order to do awhole bunch of
semaphore operations at the same time. The way senop() knowsthat you're doing thisisthe
nsop argument, which tellshow many st ruct senbuf syou're sending it. If you only have
one, well, put 1 asthis argument.

Onefidldinthest ruct senbuf that | haven't mentioned isthesem f | g field which
allows the program to specify flags the further modify the effects of the senop() call.

One of these flagsis| PC_NOWAI T which, as the name suggests, causes the call to senop()
to return with error EAGAI Nif it encounters a situation where it would normally block. Thisis
good for situations where you might want to “poll” to seeif you can allocate a resource.

Beej's Guide to Unix IPC 30

Another very useful flag isthe SEM UNDOflag. This causessenop() to record, in away,
the change made to the semaphore. When the program exits, the kernel will automatically undo
all changes that were marked with the SEM_UNDOflag. Of course, your program should do its
best to deallocate any resources it marks using the semaphore, but sometimes thisisn't possible
when your program gets a SI GKI LL or some other awful crash happens.

8.4. Destroying a semaphore

There are two ways to get rid of a semaphore: oneisto use the Unix command ipcrm. The
other isthrough acall tosentt | () with thecnd setto| PC_RM D.

Basically, you want to call senct| () and set seni d to the semaphore ID you want to axe.
The cnd should be setto | PC_RM D, which tellssentt | () to remove this semaphore set. The
parameter sermumhas no meaning in the | PC_RM D context and can just be set to zero.

Here's an example call to torch a semaphore set:

int sem d;

éenid = senget (...)

genctl(senid, 0, IPCRMD);
Easy peasy.

8.5. Sample programs

There are two of them. Thefirst, sendeno. c, creates the semaphore if necessary, and
performs some pretend file locking on it in ademo very much like that in the File Locking
document. The second program, sentr m c is used to destroy the semaphore (again, ipcrm could
be used to accomplish this.)

Theideaisto run run sendeno. c in afew windows and see how all the processes interact.
When you're done, use sent m ¢ to remove the semaphore. Y ou could also try removing the
semaphore while running sendeno. c just to see what kinds of errors are generated.

Here'ssendeno. ¢, including afunction named i ni t sen() that gets around the
semaphore race conditions, Stevens-style:

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <errno. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>

#defi ne MAX_RETRI ES 10

uni on semun {
int val;
struct sem d_ds *buf;
ushort *array;

=

/*

** jnitsem() -- nore-than-inspired by W Richard Stevens' UN X Networ k
** Progranmm ng 2nd edition, volunme 2, |ockvsemc, page 295

*/

int initsenmkey_t key, int nsens) /* key fromftok() */

{

int i;

15.http:// beej . us/ gui de/ bgi pc/ exanpl es/ sendeno. ¢

http://beej.us/guide/bgipc/examples/semdemo.c

Beej's Guide to Unix IPC

uni on semun arg
struct sem d_ds buf;
struct senbuf sb

int sem d;

sem d = senget (key, nsens, |PC CREAT | | PC EXCL | 0666);

if (semid >=0) { /* we got it first */
sb.semop = 1; sb.semflg =0
arg.val =1

printf("press return\n"); getchar()

for(sb.sem num = 0; sb.sem num < nsens; sb.sem num++) {

/* do a semop() to "free" the semaphores. */
/* this sets the semotine field, as needed bel ow. */
if (senmop(semd, &b, 1) == -1) {

int e = errno;

senctl (senmid, 0, IPCRMD); /* clean up */

errno = e;

return -1; /* error, check errno */

}

} else if (errno == EEXIST) { /* soneone else got it first */
int ready = 0;

sem d = senget (key, nsens, 0); /* get the id */
if (semid < 0) return senmid; /* error, check errno */

/* wait for other process to initialize the semaphore: */
arg. buf = &buf;
for(i =0; i < MAX_RETRIES && !ready; i++) {
sentt| (senmid, nsens-1, | PC STAT, arg);
if (arg.buf->semotinme !'=0) {
ready = 1;
} else {
sl eep(1);
}
}
if (!ready) {
errno = ETI ME
return -1;

} else {
return semd; /* error, check errno */

}

return sem d

mai n(voi d)

key t key;
int sem d;
struct senbuf sb

sb. sem num = 0
sb.semop = -1; /* set to allocate resource */
sb.sem fl g = SEM _UNDQ

if ((key = ftok("sendenmn.c", 'J')) == -1) {
perror("ftok");
exit(1);

31

Beej's Guide to Unix IPC

}
/* grab the semaphore set created by seminit.c: */
if ((semd = initsemkey, 1)) == -1) {
perror("initsent);
exit(1);
}

printf("Press return to lock: ");
getchar () ;
printf("Trying to lock...\n");

if (senpbp(senmid, &b, 1) == -1) {
perror("senop");
exit(l1);

}

printf("Locked.\n");
printf("Press return to unlock: ");

getchar () ;
sb.semop = 1; /* free resource */
if (senpbp(senmid, &b, 1) == -1) {
perror("senop");
exit(l1);
}

printf("Unl ocked\n");

return O;

32

Here'ssent m ¢ *° for removing the semaphore when you're done:

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <errno. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>

i nt mai n(voi d)
{
key t key;
int semd;
uni on semun arg

if ((key = ftok("senmdemn.c", 'J')) == -1) {
perror ("ftok");
exit(1);

}

/* grab the semaphore set created by semnit.c: */
if ((semd = senget(key, 1, 0)) == -1) {
perror("senget");
exit(1);
}

/* renove it: */

if (senttl(semid, 0, IPCRMD, arg) == -1) {
perror("senctl");
exit(1);

16. htt p: // beej . us/ gui de/ bgi pc/ exanpl es/ sentrm ¢

http://beej.us/guide/bgipc/examples/semrm.c

Beej's Guide to Unix IPC 33

return O;

Isn't that fun! I'm sure you'll give up Quake just to play with this semaphore stuff all day
long!

8.6. Summary

I might have understated the usefulness of semaphores. | assure you, they're very very very
useful in aconcurrency situation. They're often faster than regular file locks, too. Also, you
can use them on other things that aren't files, such as Shared Memory Segments! In fact, itis
sometimes hard to live without them, quite frankly.

Whenever you have multiple processes running through acritical section of code, man, you
need semaphores. Y ou have zillions of them—you might as well use ‘'em.

9. Shared Memory Segments

The cool thing about shared memory segmentsis that they are what they sound like: a
segment of memory that is shared between processes. | mean, think of the potential of this!
Y ou could alocate a block a player information for a multi-player game and have each process
accessit at will! Fun, fun, fun.

There are, as usual, more gotchas to watch out for, but it's all pretty easy in the long run.
See, you just connect to the shared memory segment, and get a pointer to the memory. You
can read and write to this pointer and all changes you make will be visible to everyone else
connected to the segment. There is nothing simpler. Well, thereis, actualy, but | was just trying
to make you more comfortable.

9.1. Creating the segment and connecting
Similarly to other forms of System V IPC, a shared memory segment is created and
connected to viathe shnget () call:
int shnget (key_t key, size_t size,
int shnflg);

Upon successful completion, shnget () returns an identifier for the shared memory
segment. The key argument should be created the same was as shown in the Message Queues
document, using f t ok () . The next argument, si ze, isthe size in bytes of the shared memory
segment. Finally, the shnf | g should be set to the permissions of the segment bitwise-ORd with
| PC_CREAT if you want to create the segment, but can be 0 otherwise. (It doesn't hurt to specify
| PC_CREAT every time—it will simply connect you if the segment aready exists.)

Here's an example call that creates a 1K segment with 644 permissions (rw-r--r--):

key t key;
int shm d;

key = ftok("/honme/ beej/sonefile3d", "R);
shm d = shnget (key, 1024, 0644 | | PC_CREAT);

But how do you get a pointer to that data from the shni d handle? The answer isin the call
shmat (), in the following section.

9.2. Attach me—qgetting a pointer to the segment

Before you can use a shared memory segment, you have to attach yourself to it using the
shmat () call:
‘void *shmat (i nt shmid, void *shnaddr, int shnflg); |

What does it all mean? Well, shni d isthe shared memory ID you got from the call to
shnget () . Next isshmaddr , which you can use to tell shmat () which specific address to use
but you should just set it to 0 and let the OS choose the address for you. Finaly, theshnf | g can
be set to SHM RDONLY if you only want to read from it, 0 otherwise.

Here's a more complete example of how to get a pointer to a shared memory segment:
key t key;
int shm d;
char *dat a;

key = ftok("/hone/ beej/sonefile3", 'R);
shm d = shnget (key, 1024, 0644 | |PC _CREAT);
data = shmat (shm d, (void *)0, 0);
And bammo! Y ou have the pointer to the shared memory segment! Notice that shmat ()
returnsavoi d pointer, and we're treating it, in this case, asachar pointer. You can treat is

34

Beej's Guide to Unix IPC 35

as anything you like, depending on what kind of datayou have in there. Pointersto arrays of
structures are just as acceptable as anything el se.

Also, it'sinteresting to note that shmat () returns- 1 on failure. But how doyouget-1ina
voi d pointer? Just do a cast during the comparison to check for errors:
data = shmat (shmd, (void *)0, 0);
if (data == (char *)(-1))

perror("shmat");

All you have to do now is change the data it points to normal pointer-style. There are some
samplesin the next section.

9.3. Reading and Writing

Lets say you have the dat a pointer from the above example. It isachar pointer, so welll
be reading and writing chars from it. Furthermore, for the sake of simplicity, lets say the 1K
shared memory segment contains a null-terminated string.

It couldn't be easier. Sinceit'sjust astring in there, we can print it like this:

‘printf("shared contents: %\n", data); |

And we could store something in it as easily as this:
printf("Enter a string: ");
gets(data);

Of course, like | said earlier, you can have other datain there besidesjust char s. I'm
just using them as an example. I'll just make the assumption that you're familiar enough with
pointersin C that you'll be able to deal with whatever kind of data you stick in there.

9.4. Detaching from and deleting segments

When you're done with the shared memory segment, your program should detach itself
from it using the shndt () call:
‘int shndt (voi d *shnaddr) ; |

The only argument, shmaddr , is the address you got from shnat () . The function returns
-1 on error, 0 0N SUCCESS.

When you detach from the segment, it isn't destroyed. Nor is it removed when everyone
detaches from it. Y ou have to specifically destroy it using acall toshntt | (), similar to the
control callsfor the other System V IPC functions:

‘shm:tl (shmid, IPC RM D, NULL); |

The above call deletes the shared memory segment, assuming no one elseis attached to it.
Theshnet | () function does alot more than this, though, and it worth looking into. (On your
own, of course, since thisis only an overview!)

As aways, you can destroy the shared memory segment from the command line using the
ipcrm Unix command. Also, be sure that you don't leave any usused shared memory segments
sitting around wasting system resources. All the System V 1PC objects you own can be viewed
using the ipcs command.

9.5. Concurrency

What are concurrency issues? Well, since you have multiple processes modifying the
shared memory segment, it is possible that certain errors could crop up when updates to the
segment occur simultaneously. This concurrent accessis amost always a problem when you
have multiple writers to a shared object.

The way to get around thisisto use Semaphores to lock the shared memory segment while
aprocessiswriting to it. (Sometimes the lock will encompass both aread an write to the shared
memory, depending on what you're doing.)

Beej's Guide to Unix IPC 36

A true discussion of concurrency is beyond the scope of this paper, and you might want
to check out the Wikipedia article on the matter . I'll just leave it with this: if you start getting
weird inconsistencies in your shared data when you connect two or more processes to it, you
could very well have a concurrency problem.

9.6. Sample code

Now that I've primed you on all the dangers of concurrent access to a shared memory
segment without using semaphores, I'll show you a demo that does just that. Since thisisn't a
mission-critical application, and it's unlikely that you'll be accessing the shared data at the same
time as any other process, I'll just leave the semaphores out for the sake of simplicity.

This program does one of two things: if you run it with no command line parameters, it
prints the contents of the shared memory segment. If you give it one command line parameter, it
stores that parameter in the shared memory segment.

Here's the code for shmdemo.c™:

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/shm h>

#define SHM SI ZE 1024 /* make it a 1K shared nenory segnent */

int main(int argc, char *argv[])

{
key t key;
int shm d;
char *dat a;
i nt node;

if (argc > 2) {
fprintf(stderr, "usage: shndenp [data to wite]\n");

exit(1);
}
/* make the key: */
if ((key = ftok("shnmdenon.c", 'R)) == -1) {
perror("ftok");
exit(1);
}
/* connect to (and possibly create) the segnent: */
if ((shmd = shnget (key, SHM SIZE, 0644 | | PC CREAT)) == -1) {
perror("shnget");
exit(1);
}

/* attach to the segnent to get a pointer to it: */
data = shmat (shmid, (void *)0, 0);
if (data == (char *)(-1)) {
perror("shmat");
exit(1);
}

/* read or nodify the segnent, based on the command |ine: */
if (argc == 2) {
printf("witing to segnent: \"9%\"\n", argv[1]);
strncpy(data, argv[1l], SHM S| ZE)

17.http://en.w ki pedi a. or g/ wi ki / Concurrency_%28conput er _sci ence%29
18.htt p: // beej . us/ gui de/ bgi pc/ exanpl es/ shndeno. ¢

http://en.wikipedia.org/wiki/Concurrency_%28computer_science%29
http://beej.us/guide/bgipc/examples/shmdemo.c

Beej's Guide to Unix IPC 37

} else
printf("segnent contains: \"%\"\n", data);

/* detach fromthe segnment: */
if (shndt(data) == -1) {
perror ("shndt");
exit(1);
}

return O;

More commonly, a process will attach to the segment and run for a bit while other
programs are changing and reading the shared segment. It's neat to watch one process update the
segment and see the changes appear to other processes. Again, for simplicity, the sample code
doesn't do that, but you can see how the data is shared between independent processes.

Also, there's no code in here for removing the segment—~be sure to do that when you're
done messing with it.

10. Memory Mapped Files

There comes a time when you want to read and write to and from files so that the
information is shared between processes. Think of it thisway: two processes both open the same
file and both read and write from it, thus sharing the information. The problem is, sometimesiit's
apainto do all thosef seek() sand stuff to get around. Wouldn't it be easier if you could just
map a section of the file to memory, and get a pointer to it? Then you could simply use pointer
arithmetic to get (and set) datain thefile.

WEell, thisis exactly what a memory mapped fileis. And it'sreally easy to use, too. A few
simple calls, mixed with afew simple rules, and you're mapping like a mad-person.

10.1. Mapmaker

Before mapping afile to memory, you need to get afile descriptor for it by using the
open() systemcall:
int fd;

fd = open("mapdenofile", O RDWR);

In this example, we've opened the file for read/write access. Y ou can open it in whatever
mode you want, but it has to match the mode specified in the pr ot parameter to the mmap()
call, below.

To memory map afile, you use the mmap() system call, which is defined as follows:
voi d *mmap(voi d *addr, size_t len, int prot,
int flags, int fildes, off_t off);

What a slew of parameters! Here they are, one at atime:

addr Thisisthe address we want the file mapped into. The best way to usethisis
tosetitto (caddr _t) 0 and let the OS chooseit for you. If you tell it to use
an address the OS doesn't like (for instance, if it's not a multiple of the virtual
memory page size), it'll give you an error.

| en This parameter is the length of the data we want to map into memory. This can
be any length you want. (Aside: if | en not amultiple of the virtual memory page
size, you will get ablocksize that is rounded up to that size. The extra bytes will
be 0, and any changes you make to them will not modify thefile.)

pr ot The “protection” argument allows you to specify what kind of accessthis
process has to the memory mapped region. This can be a bitwise-ORd mixture
of the following values. PROT_READ, PROT_WRI TE, and PROT_EXEC, for read,
write, and execute permissions, respectively. The value specified here must be
equivalent to the mode specified in the open() system call that is used to get the
file descriptor.

flags There are just miscellaneous flags that can be set for the system call. You'll
want to set it to MAP_SHARED if you're planning to share your changes to the file
with other processes, or MAP_PRI VATE otherwise. If you set it to the latter, your
process will get a copy of the mapped region, so any changes you make to it will
not be reflected in the original file—thus, other processes will not be able to see
them. We won't talk about MAP_PRI VATE here at al, since it doesn't have much
to do with IPC.

fildes Thisiswhere you put that file descriptor you opened earlier.

38

Beej's Guide to Unix IPC 39

of f Thisisthe offset in the file that you want to start mapping from. A restriction:
this must be a multiple of the virtual memory page size. This page size can be
obtained with acall to get pagesi ze() .

Asfor return values, as you might have guessed, mmap() returns- 1 on error, and sets
er r no. Otherwise, it returns a pointer to the start of the mapped data.

Anyway, without any further ado, we'll do a short demo that maps the second “page” of a
fileinto memory. First we'll open() it to get the file descriptor, then we'll use get pagesi ze()
to get the size of avirtual memory page and use this value for both thel en and the of f . In this
way, we'll start mapping at the second page, and map for one page's length. (On my Linux box,
the page sizeis4K.)

#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>

int fd, pagesize;
char *dat a;

fd = open("foo", O RDONLY);

pagesi ze = get pagesi ze();

data = nmap((caddr_t)0, pagesize, PROT_READ, MAP_SHARED, fd
pagesi ze) ;

Once this code stretch has run, you can access the first byte of the mapped section of file
using dat a[0] . Notice there'salot of type conversion going on here. For instance, mmap()
returnscaddr _t, but wetreat it asachar *. Well, thefact isthat caddr _t usually is defined to
beachar *, so everything'sfine.

Also notice that we've mapped the file PROT_READ so we have read-only access. Any
attempt to write to the data (dat a[0] = ' B', for example) will cause a segmentation violation.
Open the file O_ RDWR with pr ot set to PROT_READ| PROT_WRI TE if you want read-write access
to the data.

10.2. Unmapping the file
Thereis, of course, amunmap() function to un-memory map afile:

‘int munmap(caddr _t addr, size_t len); |

This simply unmaps the region pointed to by addr (returned from mrap()) with length
| en (same asthel en passed to mmap()). munmap() returns- 1 on error and setstheer r no
variable.

Once you've unmapped afile, any attempts to access the data through the old pointer will
result in a segmentation fault. Y ou have been warned!

A fina note: the file will automatically unmap if your program exits, of course.

10.3. Concurrency, again?!

If you have multiple processes manipulating the data in the same file concurrently, you
could bein for troubles. Y ou might have to lock the file or use semaphores to regul ate access to
the file while a process messes with it. Look at the Shared Memory document for a (very little
bit) more concurrency information.

10.4. A simple sample
WEell, it's code time again. I've got here a demo program that maps its own source to
memory and prints the byte that's found at whatever offset you specify on the command line.

Beej's Guide to Unix IPC 40

The program restricts the offsets you can specify to the range 0 through the file length. The
file length is obtained through acall to st at () which you might not have seen before. It returns
astructure full of fileinfo, one field of which isthe size in bytes. Easy enough.

Here isthe source for mapdeno. ¢ *:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>
#i ncl ude <sys/stat.h>
#i ncl ude <errno. h>

int main(int argc, char *argv[])

{
int fd, offset;
char *data;
struct stat sbuf;

if (argc '= 2) {
fprintf(stderr, "usage: nmapdeno of fset\n");
exit(1);

}

if ((fd = open("nmapdeno.c", O RDONLY)) == -1) {
perror (" open");
exit(1);

}

if (stat("mmpdeno.c", &sbuf) == -1) {
perror("stat");
exit(1);

}

of fset = atoi (argv[1])
if (offset < 0 || offset > shuf.st_size-1) {
fprintf(stderr, "mmapdeno: offset nmust be in the range 0-%\n", \
sbuf . st_size-1);
exit(1);
}

data = mmap((caddr _t)0, sbuf.st_size, PROT_READ, MAP_SHARED, fd, 0)) \
== (caddr_t)(-1)) {
if (data == (caddr_t)(-1)) {
perror (" nmmap");
exit(1);
}

printf("byte at offset % is '%'\n", offset, data[offset]);

return O;

That's al thereisto it. Compile that sucker up and run it with some command line like:

$ nmapdeno 30
byte at offset 30 is 'e

I'll leave it up to you to write some really cool programs using this system call.

19. http://beej.us/guidel/bgi pc/ exanpl es/ mmapdeno. ¢

http://beej.us/guide/bgipc/examples/mmapdemo.c

Beej's Guide to Unix IPC

10.5. Summary

Memory mapped files can be very useful, especially on systems that don't support shared
memory segments. In fact, the two are very similar in most respects. (Memory mapped files
are committed to disk, too, so this could even be an advantage, yes?) With file locking or
semaphores, datain a memory mapped file can easily be shared between multiple processes.

41

11. Unix Sockets

Remember FIFOs? Remember how they can only send datain one direction, just like a
Pipes? Wouldn't it be grand if you could send data in both directions like you can with a socket?

WEell, hope no longer, because the answer is here: Unix Domain Sockets! In case you're
still wondering what a socket is, well, it's atwo-way communications pipe, which can be used
to communicate in awide variety of domains. One of the most common domains sockets
communicate over isthe Internet, but we won't discuss that here. We will, however, be talking
about sockets in the Unix domain; that is, sockets that can be used between processes on the
same Unix system.

Unix sockets use many of the same function calls that Internet sockets do, and | won't be
describing all of the calls| use in detail within this document. If the description of a certain
call istoo vague (or if you just want to learn more about Internet sockets anyway), | arbitrarily
suggest Begj's Guide to Network Programming using Internet Sockets®. | know the author
personally.

11.1. Overview

Like | said before, Unix sockets are just like two-way FIFOs. However, all data
communication will be taking place through the sockets interface, instead of through the file
interface. Although Unix sockets are a specia filein the file system (just like FIFOs), you won't
be using open() andr ead() —you'll beusing socket (), bi nd(),recv(), €tc.

When programming with sockets, you'll usually create server and client programs. The
server will sit listening for incoming connections from clients and handle them. Thisis very
similar to the situation that exists with Internet sockets, but with some fine differences.

For instance, when describing which Unix socket you want to use (that is, the path to
the special filethat isthe socket), you useast ruct sockaddr _un, which hasthe following
fields:
struct sockaddr _un {

unsi gned short sun_famly; /* AF_UN X */
char sun_pat h[108];

Thisisthe structure you will be passing to the bi nd() function, which associates a socket
descriptor (afile descriptor) with a certain file (the name for which isin the sun_pat h field).

11.2. What to do to be a Server

Without going into too much detail, I'll outline the steps a server program usually hasto go
through to do it'sthing. While I'm at it, I'll be trying to implement an “echo server” which just
echos back everything it gets on the socket.

Here are the server steps.

1. Call socket (): A call tosocket () with the proper arguments creates the Unix
socket:

unsigned int s, s2;
struct sockaddr_un | ocal, renvote;
int |en;

s = socket (AF_UNI X, SOCK_STREAM 0);

The second argument, SOCK_STREAM tellssocket () to create a stream socket. Y es,
datagram sockets (SOCK_DGRAM) are supported in the Unix domain, but I'm only

20.htt p: // beej . us/ gui de/ bgnet/

42

http://beej.us/guide/bgnet/

Beej's Guide to Unix IPC 43

going to cover stream sockets here. For the curious, see Begj's Guide to Network
Programming® for a good description of unconnected datagram sockets that applies
perfectly well to Unix sockets. The only thing that changesis that you're now using a
struct sockaddr _uninstead of astruct sockaddr _in.

One more note: al these callsreturn - 1 on error and set the global variable er r no to
reflect whatever went wrong. Be sure to do your error checking.

2. Call bi nd() : You got a socket descriptor from the call to socket (), now you want
to bind that to an address in the Unix domain. (That address, as| said before, isa
special file on disk.)

local .sun_famly = AF_ UNLX; /* local is declared before socket() ~ */
strcpy(l ocal . sun_path, "/hone/beej/nysocket");

unl i nk(l ocal . sun_pat h) ;

len = strlen(local.sun_path) + sizeof(local.sun_famly);

bi nd(s, (struct sockaddr *)& ocal, |en);

This associates the socket descriptor “s” with the Unix socket address

“/I hone/ beej / nysocket ”. Notice that we called unl i nk() beforebi nd() to
remove the socket if it already exists. You will get an EI NVAL error if thefileis

already there.

3. Call l'i sten(): Thisinstructs the socket to listen for incoming connections from
client programs:
‘Iisten(s, 5); |
The second argument, 5, is the number of incoming connections that can be queued

before you call accept (), below. If there are this many connections waiting to be
accepted, additional clients will generate the error ECONNREFUSED.

4. Call accept () : Thiswill accept a connection from aclient. This function returns
another socket descriptor! The old descriptor is still listening for new connections, but
this new one is connected to the client:

| en = sizeof (struct sockaddr _un);
s2 = accept(s, & enote, & en);

When accept () returns, ther enot e variable will be filled with the remote side's
struct sockaddr _un, and| en will be set to its length. The descriptor s2 is
connected to the client, and isready for send() andrecv(), asdescribed in the
Network Programming Guide®.

5. Handle the connection and loop back to accept () : Usualy you'll want to
communicate to the client here (we'll just echo back everything it sends us), close the
connection, then accept () anew one.

while (len = recv(s2, &buf, 100, 0), len > 0)
send(s2, &buf, len, 0);

/* 1 oop back to accept() from here */

6. Closethe connection: You can close the connection either by calling cl ose() , or by
calling shut down() *.

With all that said, here is some source for an echoing server, echos. ¢ *. All it doesis wait
for a connection on a Unix socket (named, in this case, “echo_socket”).
#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
24.http:// beej. us/ gui del/ bgi pc/ exanpl es/ echos. ¢

http://beej.us/guide/bgnet/
http://beej.us/guide/bgnet/
http://beej.us/guide/bgnet/
http://beej.us/guide/url/shutdownman
http://beej.us/guide/bgipc/examples/echos.c

Beej's Guide to Unix IPC

#i ncl ude <errno. h>
#i ncl ude <string. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <sys/un. h>

#defi ne SOCK_PATH "echo_socket "

i nt mai n(voi d)
{
int s, s2, t, len;
struct sockaddr_un | ocal, renote;
char str[100];

if ((s = socket (AF_UNI X, SOCK_STREAM 0)) == -1) {
perror("socket");
exit(1);

}

| ocal .sun_famly = AF_UNI X;

strcpy(l ocal . sun_path, SOCK PATH);

unl i nk(l ocal . sun_pat h) ;

len = strlen(local.sun_path) + sizeof(local.sun_fanily);

if (bind(s, (struct sockaddr *)& ocal, len) == -1) {
perror("bind");
exit(1);
}
if (listen(s, 5) == -1) {
perror("listen");
exit(1);
}
for(;;) {

int done, n

printf("Waiting for a connection...\n");

t = sizeof(renote);

if ((s2 = accept(s, (struct sockaddr *)&enpte, &)) == -1) {
perror("accept");
exit(1);

}

printf("Connected.\n");

done = 0
do {
n = recv(s2, str, 100, 0);
if (n <=0) {
if (n <0) perror("recv");
done = 1;

}

if (!done)
if (send(s2, str, n, 0) <0) {
perror("send");

done = 1;
}
} while (!done);
cl ose(s2);
}
return O;

Beej's Guide to Unix IPC 45

Asyou can seeg, al the aforementioned steps are included in this program: call socket (),
call bi nd(),callisten(),calaccept (), anddo somenetwork send()sandrecv()s.

11.3. What to do to be a client
There needs to be a program to talk to the above server, right? Except with the client, it'sa
lot easier because you don't haveto do any pesky | i st en() ing or accept () ing. Here are the

steps:
1. Cal socket () to get aUnix domain socket to communicate through.

2. Setupastruct sockaddr_un with the remote address (where the server is
listening) and call connect () with that as an argument

3. Assuming no errors, you're connected to the remote side! Usesend() andrecv() to
your heart's content!

How about code to talk to the echo server, above? No sweat, friends, hereisechoc. ¢ *:

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <sys/un. h>

#defi ne SOCK PATH "echo_socket"

i nt mai n(voi d)
{
int s, t, len;
struct sockaddr _un renvte;
char str[100];

if ((s = socket (AF_UNI X, SOCK _STREAM 0)) == -1) {
perror("socket");
exit(1);

}

printf("Trying to connect...\n");

remote. sun_famly = AF_UNI X;
strcpy(renote. sun_path, SOCK_PATH);
len = strlen(renote. sun_path) + sizeof(renote.sun_fanily)
if (connect(s, (struct sockaddr *)& enote, len) == -1) {
perror("connect");
exit(1);
}

printf("Connected.\n");

while(printf("> "), fgets(str, 100, stdin), !feof(stdin)) {

if (send(s, str, strlen(str), 0) == -1) {
perror("send");
exit(l);

}

if ((t=recv(s, str, 100, 0)) > 0) {
str{t] = "'\0'
printf("echo> %", str);

} else {

25.http:// beej. us/ gui de/ bgi pc/ exanpl es/ echoc. ¢

http://beej.us/guide/bgipc/examples/echoc.c

Beej's Guide to Unix IPC 46

if (t <0) perror(“recv");
el se printf("Server closed connection\n");
exit(1);
}

}

cl ose(s);

return O;

}

In the client code, of course you'll notice that there are only afew system calls used to
set things up: socket () and connect () . Sincethe client isn't going to be accept () ing
any incoming connections, theresno need for ittol i st en() . Of course, the client still uses
send() andrecv() for transferring data. That about sums it up.

11.4. socket pai r () —quick full-duplex pipes

What if you wanted a pi pe() , but you wanted to use a single pipe to send and recieve
datafrom both sides? Since pipes are unidirectional (with exceptionsin SY SV), you can't do it!
Thereis a solution, though: use a Unix domain socket, since they can handle bi-directional data.

What a pain, though! Setting up all that codewith | i st en() and connect () and all that
just to pass data both ways! But guess what! Y ou don't have to!

That's right, there's a beauty of a system call known assocket pai r () thisisnice enough
to return to you a pair of already connected sockets! No extrawork is needed on your part; you
can immediately use these socket descriptors for interprocess communication.

For instance, lets set up two processes. Thefirst sendsachar to the second, and the second
changes the character to uppercase and returns it. Here is some simple code to do just that,
called spai r. ¢ ** (with no error checking for clarity):

#i ncl ude <stdi o. h>
#incl ude <stdlib. h>
#i ncl ude <ctype. h>
#i ncl ude <errno. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt mai n(voi d)
{
int sv[2]; /* the pair of socket descriptors */

char buf; /* for data exchange between processes */

i f (socketpair(AF_UNI X, SOCK STREAM 0, sv) == -1) {
perror("socketpair");
exit(1);

}

if ('fork()) { /* child */
read(sv[1], &buf, 1);
printf("child: read '%'\n", buf);
buf = toupper(buf); /* nmake it uppercase */
wite(sv[1l], &buf, 1);
printf("child: sent '%'\n", buf);

} else { /* parent */
wite(sv[0], "b", 1);
printf("parent: sent 'b'\n");
read(sv[0], &buf, 1);
printf("parent: read '%'\n", buf);
wai t (NULL); /* wait for child to die */
26. http://beej.us/guidel/bgi pc/exanpl es/spair.c

http://beej.us/guide/bgipc/examples/spair.c

Beej's Guide to Unix IPC 47

}

return O;

Sure, it's an expensive way to change a character to uppercase, but it's the fact that you
have simple communication going on here that really matters.

One more thing to notice isthat socket pai r () takesboth adomain (AF_UNI X) and
socket type (SOCK_STREAM. These can be any legal values at all, depending on which routines
in the kernel you want to handle your code, and whether you want stream or datagram sockets.
| chose AF_UNI X sockets because thisis a Unix sockets document and they're a bit faster than
AF_| NET sockets, | hear.

Finally, you might be curious asto why I'musingwri t e() andread() instead of send()
andrecv().Wsdl, inshort, | was being lazy. See, by using these system calls, | don't have to
enter thef | ags argument that send() andrecv() use and | always set it to zero anyway.

Of course, socket descriptors are just file descriptors like any other, so they respond just fine to
many file manipulation system calls.

12. More IPC Resources

12.1. Books
Here are some books that describe some of the procedures I've discussed in this guide, as
well as Unix detailsin specific:

Unix Network Programming, volumes 1-2 by W. Richard Stevens. Published by
Prentice Hall. ISBNs for volumes 1-2: 0131411551, 0130810819,

Advanced Programming in the UNIX Environment by W. Richard Stevens. Published
by Addison Wesley. ISBN 02014330797,

Bach, Maurice J. The Design of the UNIX Operating System. New Jersey:
Prentice-Hall, 1986. ISBN 0132017997 *.

12.2. Other online documentation

UNIX Network Programming Volume 2 home page*—includes source code from

Stevens' superfine book
The Linux Programmer's Guide®
UNIX System Calls and Subroutines using C*—
The Linux Kernel *

*—in-depth section on IPC
contains modest | PC information

—how the Linux kernel implements |PC

12.3. Linux man pages
There are Linux manual pages. If you run another flavor of Unix, please look at your own
man pages, as these might not work on your system.

accept () *, bi nd() *, connect () ¥, dup() ¥ exec() ¥, exit() ® fentl () *,
fileno() % fork() ® ftok() * getpagesize() ® ipcrm®, ipcs”, kill ®, ki 11 () *,
listen() ™ 1 ockf() ™ | seek() *(forthel _whence fieldinstruct flock), mknod

® nmknod() ¥, mmap() %, nsgct | () *, msgget () ¥, msgsnd() %, nunmap() *, open() ®
27.http://beej.us/guide/url/unixnetl
28.http://bee].us/guide/url/unixnet?2
29.http:// bee] . us/gui de/ url/advuni x
30.http://beej.us/guide/url/unixdesi g
31 http://ww. kohal'a. com start/ unpv22e/ unpv22e. htm
32.http://tldp.org/LDP/| pg/ node7.
33.http://ww. cs. cf.ac. uk/ Dave/ T/
4. http://tldp. org/LDP/tI kl/'ipc/ipc.htm
35. http://ww. | i nuxmanpages. conl man2/ accept . 2. php
36.http://ww. | i nuxmanpages. coml man2/ bi nd. 2. php
37.http://ww. | i nuxmanpages. coni nan2/ connect 2. php
38.http://ww. | i nuxmanpages. conl man2/ dup. 2 ph
39.http://wwmv | i nuxmanpages. conm man2/ exec.
40. htt p: / / ww. | i nuxmanpages. coni man2/ exi t . hﬁ
41. http: // ww. | i nuxmanpages. conl man2/ fcnt | ﬁ
42.http://ww. | i nuxmanpages. comi man3/fil en 0. 3 p
43.http: //ww. | i nuxmanpages. conl man2/ f or k. 2. php
44.http://ww. | i nuxmanpages. coml man3/ ft ok. 3. php
45.http: // wwv. | i nuxmanpages. con man2/ get pa g Si z . 2. php
46.http: // ww. | i nuxmanpages. conl man8/ 1 pcrm 8 ﬁ
47.http: // www. | i nuxmanpages. coml man8/ i pcs. 8. php
48. http: //www. | i nuxmanpages. comf manl/kill. 1. php
49.http: //ww | i nuxmanpages. comf man2/ kil | . 2. php
50. htt p: // www. | i nuxmanpages. conl man2/ | i st en. 2. ﬁhp
51 http://ww. | i nuxmanpages. conl man2/ | ockf. 2. php
52.http://ww. | i nuxmanpages. conl man2/ | seek. 2 php
53.http://ww. | i nuxmanpages. com manl/ mknod. php
54.http://ww. | inuxmanpages. coni man2/ nknod. hp
55.htt p: //ww. | i nuxmanpages. coni nan2/ rap. 2 p p

48

http://beej.us/guide/url/unixnet1
http://beej.us/guide/url/unixnet2
http://beej.us/guide/url/advunix
http://beej.us/guide/url/unixdesign
http://www.kohala.com/start/unpv22e/unpv22e.html
http://tldp.org/LDP/lpg/node7.html
http://www.cs.cf.ac.uk/Dave/C/
http://tldp.org/LDP/tlk/ipc/ipc.html
http://www.linuxmanpages.com/man2/accept.2.php
http://www.linuxmanpages.com/man2/bind.2.php
http://www.linuxmanpages.com/man2/connect.2.php
http://www.linuxmanpages.com/man2/dup.2.php
http://www.linuxmanpages.com/man2/exec.2.php
http://www.linuxmanpages.com/man2/exit.2.php
http://www.linuxmanpages.com/man2/fcntl.2.php
http://www.linuxmanpages.com/man3/fileno.3.php
http://www.linuxmanpages.com/man2/fork.2.php
http://www.linuxmanpages.com/man3/ftok.3.php
http://www.linuxmanpages.com/man2/getpagesize.2.php
http://www.linuxmanpages.com/man8/ipcrm.8.php
http://www.linuxmanpages.com/man8/ipcs.8.php
http://www.linuxmanpages.com/man1/kill.1.php
http://www.linuxmanpages.com/man2/kill.2.php
http://www.linuxmanpages.com/man2/listen.2.php
http://www.linuxmanpages.com/man2/lockf.2.php
http://www.linuxmanpages.com/man2/lseek.2.php
http://www.linuxmanpages.com/man1/mknod.1.php
http://www.linuxmanpages.com/man2/mknod.2.php
http://www.linuxmanpages.com/man2/mmap.2.php
http://www.linuxmanpages.com/man2/msgctl.2.php
http://www.linuxmanpages.com/man2/msgget.2.php
http://www.linuxmanpages.com/man2/msgsnd.2.php
http://www.linuxmanpages.com/man2/munmap.2.php
http://www.linuxmanpages.com/man2/open.2.php

Beej's Guide to Unix IPC

pi pe() *, ps% raise() ® read() * recv() ® senctl () % senmget () *, senop() %,
send() %, shmat () °, shnctl () ™, shndt () % shnget () *, si gaction() “ signal () ",
signals™, si gpendi ng() “, si gprocmask() ", sigsetops™, si gsuspend() *, socket () ¥,

socketpair() % stat() ® wait() * waitpid()®wite()®.

56. http: //wwv. | i nuxmanpages. conl man2/ nsgctl . 2. php
57.http://ww. | i nuxmanpages. conl man2/ nsgget . 2. php
58.http://ww | i nuxmanpages. com man2/ msgsnd. 2. php
59.http://wwv | i nuxmanpages. conl man2/ nunmap. 2. php

60. htt p: // www. | i nuxnmanpages. con? man2/ open. 2. php

61. http://ww | i nuxmanpages. com man2/ pi pe. 2. php

62. htt p: // www. | i nuxmanpages. conl manl/ ps. 1. php

63. htt p: // ww. | i nuxmanpages. coml man3/rai se. 3. ﬁhp

64. htt p: //www | i nuxmanpages. com man2/ read. 2. php

65. htt p: // www. | i nuxmanpages. com man2/ recv. 2. php

66. htt p: // ww. | i nuxmanpages. coni nan2/ senctl . 2. php
67.http: //wwv | i nuxmanpages. conl man2/ senget . 2. ﬁhp

68. htt p: // www. | i nuxmanpages. com man2/ senop. 2. P. p

69. htt p: // www. | i nuxmanpages. conl man2/ send. 2. p ﬁ

70.htt p: // www. | i nuxmanpages. coml man2/ shmat . 2. p

7L http://ww. | i nuxmanpages. com man2/ shntt! . 2. php
72.http://ww | i nuxmanpages. com man2/ shndt. 2. p ﬁ
73.http://ww | i nuxmanpages. com man2/ shnget . 2. php
74.http://ww. | i nuxmanpages. con? man2/ si gacti on. 2. php
75.http://ww. | i nuxmanpages. com man2/ si gnal . 2. php
76.http: //ww | i nuxmanpages. coml man7/ si gnal . 7. ph
77.http: //ww. | i nuxmanpages. com man2/ si gpendi ng. 2. phﬁ
78. http://ww | i nuxmanpages. com man2/ si gpr ocrmask. 2. php
79.http: //ww | i nuxmanpages. com man2/ si gset ops. 2. ph
80. http: //wwn. | i nuxmanpages. conl man2/ si gsuspend. 2. php
81 http://wwmv | i nuxmanpages. conl man2/ socket . 2. php

82. http://wwmv | i nuxmanpages. conl man2/ socket pair. 2. php
83.http://wwm | i nuxmanpages. conl man2/ st at. 2. php
84.http://ww | i nuxmanpages. coml man2/ wai t. 2. php

85. http://wmv | i nuxmanpages. conl man2/ wai t pi d. 2. php
86.http://ww. | i nuxmanpages. conf man2/ wite. 2. php

http://www.linuxmanpages.com/man2/pipe.2.php
http://www.linuxmanpages.com/man1/ps.1.php
http://www.linuxmanpages.com/man3/raise.3.php
http://www.linuxmanpages.com/man2/read.2.php
http://www.linuxmanpages.com/man2/recv.2.php
http://www.linuxmanpages.com/man2/semctl.2.php
http://www.linuxmanpages.com/man2/semget.2.php
http://www.linuxmanpages.com/man2/semop.2.php
http://www.linuxmanpages.com/man2/send.2.php
http://www.linuxmanpages.com/man2/shmat.2.php
http://www.linuxmanpages.com/man2/shmctl.2.php
http://www.linuxmanpages.com/man2/shmdt.2.php
http://www.linuxmanpages.com/man2/shmget.2.php
http://www.linuxmanpages.com/man2/sigaction.2.php
http://www.linuxmanpages.com/man2/signal.2.php
http://www.linuxmanpages.com/man7/signal.7.php
http://www.linuxmanpages.com/man2/sigpending.2.php
http://www.linuxmanpages.com/man2/sigprocmask.2.php
http://www.linuxmanpages.com/man2/sigsetops.2.php
http://www.linuxmanpages.com/man2/sigsuspend.2.php
http://www.linuxmanpages.com/man2/socket.2.php
http://www.linuxmanpages.com/man2/socketpair.2.php
http://www.linuxmanpages.com/man2/stat.2.php
http://www.linuxmanpages.com/man2/wait.2.php
http://www.linuxmanpages.com/man2/waitpid.2.php
http://www.linuxmanpages.com/man2/write.2.php

	Contents
	Intro
	Audience
	Platform and Compiler
	Official Homepage
	Email Policy
	Mirroring
	Note for Translators
	Copyright and Distribution

	A fork() Primer
	"Seek ye the Gorge of Eternal Peril"
	"I'm mentally prepared! Give me The Button!"
	Summary

	Signals
	You can't SIGKILL the President!
	Everything you know is wrong
	Some signals to make you popular

	Pipes
	"These pipes are clean!"
	fork() and pipe()—you have the power!
	The search for Pipe as we know it
	Summary

	FIFOs
	A New FIFO is Born
	Producers and Consumers
	O_NDELAY! I'm UNSTOPPABLE!
	Multiple Writers—How do I multiplex all these?
	Concluding Notes

	File Locking
	Setting a lock
	Clearing a lock
	A demo program
	Summary

	Message Queues
	Where's my queue?
	"Are you the Key Master?"
	Sending to the queue
	Receiving from the queue
	Destroying a message queue
	Sample programs, anyone?
	Summary

	Semaphores
	Grabbing some semaphores
	Controlling your semaphores with semctl()
	semop(): Atomic power!
	Destroying a semaphore
	Sample programs
	Summary

	Shared Memory Segments
	Creating the segment and connecting
	Attach me—getting a pointer to the segment
	Reading and Writing
	Detaching from and deleting segments
	Concurrency
	Sample code

	Memory Mapped Files
	Mapmaker
	Unmapping the file
	Concurrency, again?!
	A simple sample
	Summary

	Unix Sockets
	Overview
	What to do to be a Server
	What to do to be a client
	socketpair()—quick full-duplex pipes

	More IPC Resources
	Books
	Other online documentation
	Linux man pages

