Beej's Guide to Network Programming
Using Internet Sockets

Brian “Beej Jorgensen” Hall
beej@beej.us

Version 2.4.5
August 5, 2007

Copyright © 2007 Brian “Beej Jorgensen” Hall

Contents

T 1 1o TSRO PRTURPOPRTPRRRIN 1
1.1. Audience 1
1.2. Platform and Compiler 1
1.3. Officia Homepage 1
1.4. Note for Solaris/'SunOS Programmers 1
1.5. Note for Windows Programmers 1
1.6. Email Policy 3
1.7. Mirroring 3
1.8. Note for Tranglators 3
1.9. Copyright and Distribution 3
2. WAL 1S @ SOCKEL ...ttt sttt b e se et et et et e st et e s b bt e st e st e e et e ntenne e 5
2.1. Two Types of Internet Sockets 5
2.2. Low level Nonsense and Network Theory 6
3.structsand Data HanAliNgG.........ooeieeiieie ettt e re e 9
3.1. Convert the Natives! 10
3.2. IP Addresses and How to Deal With Them 10
Y Es = OF=11 ES o g = T £ S 13
4.1. socket () —Get the File Descriptor! 13
4.2. bi nd() —What port am | on? 13
4.3. connect () —Hey, you! 15
4.4.1i st en() —Will somebody please call me? 16
4.5. accept () —“Thank you for calling port 3490.” 16
4.6. send() and recv()—Tak to me, baby! 18
4.7. sendt o() andrecvfron()—Tak to me, DGRAM-style 18
4.8. cl ose() and shut down() —Get outta my face! 19
4.9. get peer nane() —Who are you? 20
4.10. get host nane() —Who am I? 20
4.11. DNS—You say “whitehouse.gov”, | say “63.161.169.137” 20
5. Client-Server BaCKgrOUNG..........coooiieiriieiicie ettt sttt nae e sne s 23
5.1. A Simple Stream Server 23
5.2. A Simple Stream Client 25
5.3. Datagram Sockets 26
6. Slightly Advanced TEChNIQUES........ccecceiieie ettt ne e 29
6.1. Blocking 29
6.2. sel ect () —Synchronous I/O Multiplexing 29
6.3. Handling Partial send() s 34
6.4. Serialization—How to Pack Data 35
6.5. Son of Data Encapsulation 43
6.6. Broadcast Packets—Hello, World! 45

Contents

7. Common Questions.

8. Man Pages.

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.

accept ()

bi nd()

connect ()

cl ose()

get host nane()

get host bynane(), get host byaddr ()
get peer nane()

errno

fentl ()

8.10. ht ons(), htonl (), ntohs(), ntohl ()
8.11. inet _ntoa(),inet_aton()
8.12. listen()

8.13. perror (), strerror()
8.14. pol I ()

8.15. recv(), recvfrom))
8.16. sel ect ()

8.17. set sockopt (), get sockopt ()
8.18. send(), sendt o()
8.19. shut down()

8.20. socket ()

8.21. struct sockaddr_in,struct in_addr

O, M OF @ REFEI BNCES.....ceeeeeeeeeeeeeeeeeeeeeeee ettt ettt ettt e eeeeeeeeeeeeeeeeaeeeeeseseseeeseseseseeeeesesasesesnnnnnsennsnnnnnnnnns

9.1.
9.2.
9.3.

I ndex

Books
Web References
RFCs

1. Intro

Hey! Socket programming got you down? Is this stuff just alittle too difficult to figure out
from the man pages? Y ou want to do cool Internet programming, but you don't have time to wade
through agob of st r uct strying to figure out if you haveto call bi nd() before you connect (),
etc., etc.

WEell, guess what! I've already done this nasty business, and I'm dying to share the information
with everyone! Y ou've come to the right place. This document should give the average competent C
programmer the edge s'he needs to get a grip on this networking noise.

1.1. Audience
This document has been written as atutorial, not areference. It is probably at its best when
read by individuals who are just starting out with socket programming and are looking for a
foothold. It is certainly not the complete guide to sockets programming, by any means.
Hopefully, though, it'll be just enough for those man pages to start making sense... : -)

1.2. Platform and Compiler

The code contained within this document was compiled on a Linux PC using Gnu's gcc
compiler. It should, however, build on just about any platform that uses gcc. Naturally, this doesn't
apply if you're programming for Windows—see the section on Windows programming, below.

1.3. Official Homepage
This official location of thisdocument isht t p: // beej . us/ gui de/ bgnet / .

1.4. Note for Solaris/SunOS Programmers

When compiling for Solaris or SunOS, you need to specify some extra command-line switches
for linking in the proper libraries. In order to do this, simply add “- | nsl -1 socket -lresolv”
to the end of the compile command, like so:

$ cc -0 server server.c -lInsl -lsocket -lresolv

If you still get errors, you could try further adding a“- | xnet ” to the end of that command
line. I don't know what that does, exactly, but some people seem to need it.

Another place that you might find problemsisin the call to set sockopt () . The prototype
differs from that on my Linux box, so instead of:

‘int yes=1; |
enter this:

‘char yes='1'; |
As| don't have a Sun box, | haven't tested any of the above information—it's just what people

have told me through email.

1.5. Note for Windows Programmers

At this point in the guide, historically, I've done a bit of bagging on Windows, simply due to
the fact that | don't like it very much. But | should really be fair and tell you that Windows has a
huge install base and is obviously a perfectly fine operating system.

They say absence makes the heart grow fonder, and in this case, | believe it to be true. (Or
maybe it's age.) But what | can say isthat after a decade-plus of not using Microsoft OSes for my

http://beej.us/guide/bgnet/

Beej's Guide to Network Programming

personal work, I'm much happier! Assuch, | can sit back and safely say, “ Sure, feel freeto use
Windows!” ...Ok yes, it does make me grit my teeth to say that.

So | till encourage you to try Linux*, BSD?, or some flavor of Unix, instead.

But people like what they like, and you Windows folk will be pleased to know that this
information is generally applicable to you guys, with afew minor changes, if any.

One cool thing you can do isinstall Cygwin®, which is acollection of Unix tools for Windows.
I've heard on the grapevine that doing so alows all these programs to compile unmodified.

But some of you might want to do things the Pure Windows Way. That's very gutsy of you,
and thisiswhat you have to do: run out and get Unix immediately! No, no—I'm kidding. I'm
supposed to be Windows-friendly(er) these days...

Thisiswhat you'll have to do (unless you install Cygwin!): first, ignore pretty much all of the
system header files| mention in here. All you need to includeis:

‘#i ncl ude <wi nsock. h>

Wait! You aso have to make acall to WBASt ar t up() before doing anything else with the
sockets library. The code to do that |ooks something like this:

#i ncl ude <wi nsock. h>

WBADATA wsaDat a; // if this doesn't work
/I WsADat a wsaData; // then try this instead

i f (WBAStartup(MAKEWORD(1, 1), &wsaData) != 0) {
fprintf(stderr, "WBAStartup failed.\n");
exit(1);

}
You also haveto tell your compiler to link in the Winsock library, usually called
wsock32. i b orw nsock32. 1i b or some-such. Under VC++, this can be done through
the Pr oj ect menu, under Set ti ngs. ... Click theLi nk tab, and look for the box titled
“Object/library modules’. Add “wsock32.1ib" to that list.

Or so0 | hear.

Finally, you need to call WA eanup() when you're all through with the sockets library. See
your online help for details.

Once you do that, the rest of the examplesin this tutoria should generally apply, with
afew exceptions. For one thing, you can't use cl ose() to close a socket—you need to use
cl osesocket (), instead. Also, sel ect () only works with socket descriptors, not file descriptors
(like O for st di n).

Thereis aso asocket class that you can use, CSocket . Check your compilers help pages for
more information.

To get more information about Winsock, read the Winsock FAQ* and go from there.

Finally, | hear that Windows hasno f or k() system call which is, unfortunately, used in some
of my examples. Maybe you haveto link in aPOSI X library or something to get it to work, or
you can use Cr eat eProcess() instead. f or k() takes no arguments, and Cr eat ePr ocess()
takes about 48 billion arguments. If you're not up to that, the Cr eat eThr ead() isalittle easier to

[ww. |1 nux. com

o/ [www. bsd. or g/

[[www. cygwi n. comf
//tangentsoft. net/wskfaq/

http://www.linux.com/
http://www.bsd.org/
http://www.cygwin.com/
http://www.cygwin.com/
http://tangentsoft.net/wskfaq/

Intro

digest...unfortunately a discussion about multithreading is beyond the scope of this document. | can
only talk about so much, you know!

1.6. Email Policy

I'm generally available to help out with email questions so feel free to writein, but | can't
guarantee aresponse. | lead a pretty busy life and there are timeswhen | just can't answer a question
you have. When that's the case, | usually just delete the message. It's nothing personal; | just won't
ever have the time to give the detailed answer you require.

Asarule, the more complex the question, the less likely | am to respond. If you can narrow
down your question before mailing it and be sure to include any pertinent information (like
platform, compiler, error messages you're getting, and anything else you think might help me
troubleshoot), you're much more likely to get aresponse. For more pointers, read ESR's document,
How To Ask Questions The Smart Way °.

If you don't get aresponse, hack on it some more, try to find the answer, and if it's still elusive,
then write me again with the information you've found and hopefully it will be enough for me to
help out.

Now that I've badgered you about how to write and not write me, 1'd just like to let you know
that | fully appreciate all the praise the guide has received over the years. It's areal morale boost,
and it gladdens meto hear that it is being used for good! : -) Thank you!

1.7. Mirroring
Y ou are more than welcome to mirror this site, whether publicly or privately. If you publicly
mirror the site and want meto link to it from the main page, drop me aline a beej @ee;j . us.

1.8. Note for Translators

If you want to trangdlate the guide into another language, write me at beej @eej . us and I'll
link to your translation from the main page. Feel free to add your name and contact info to the
translation.

Please note the license restrictions in the Copyright and Distribution section, below.

Sorry, but due to space constraints, | cannot host the translations myself.

1.9. Copyright and Distribution

Beg's Guide to Network Programming is Copyright © 2007 Brian “Begj Jorgensen” Hall.

With specific exceptions for source code and trandlations, below, thiswork is licensed under
the Creative Commons Attribution- Noncommercial- No Derivative Works 3.0 License. To view
acopy of thislicense, visithtt p: // creati vecommons. or g/ | i censes/ by-nc-nd/ 3. 0/ or
send aletter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

One specific exception to the “No Derivative Works™ portion of the licenseis asfollows: this
guide may be freely trandated into any language, provided the trandlation is accurate, and the guide
isreprinted in its entirety. The same license restrictions apply to the tranglation as to the original
guide. The translation may also include the name and contact information for the translator.

The C source code presented in this document is hereby granted to the public domain, and is
completely free of any license restriction.

Educators are freely encouraged to recommend or supply copies of this guide to their students.

Contact beej @eej . us for more information.

5.http://ww. catb. org/ ~esr/faqs/smart-questions. htm

http://www.catb.org/~esr/faqs/smart-questions.html
http://creativecommons.org/licenses/by-nc-nd/3.0/

2. What is a socket?

Y ou hear talk of “sockets” al the time, and perhaps you are wondering just what they are
exactly. Well, they're this: away to speak to other programs using standard Unix file descriptors.

What?

Ok—you may have heard some Unix hacker state, “ Jeez, everything in Unix isafile!” What
that person may have been talking about is the fact that when Unix programs do any sort of 1/O,
they do it by reading or writing to afile descriptor. A file descriptor is simply an integer associated
with an open file. But (and here's the catch), that file can be a network connection, aFFIFO, apipe,
aterminal, areal on-the-disk file, or just about anything else. Everything in Unix isafile! So when
you want to communicate with another program over the Internet you're gonna do it through afile
descriptor, you'd better believeit.

“Where do | get thisfile descriptor for network communication, Mr. Smarty-Pants?’ is
probably the last question on your mind right now, but I'm going to answer it anyway: Y ou make a
call tothesocket () system routine. It returns the socket descriptor, and you communicate through
it using the specialized send() andrecv() (man send, man recv) socket calls.

“But, hey!” you might be exclaiming right about now. “If it's a file descriptor, why in the name
of Neptune can't | just usethe normal read() andwri t e() callsto communicate through the
socket?” The short answer is, “You can!” The longer answer is, “You can, but send() andrecv()
offer much greater control over your data transmission.”

What next? How about this: there are all kinds of sockets. There are DARPA Internet
addresses (Internet Sockets), path names on alocal node (Unix Sockets), CCITT X.25 addresses
(X.25 Sockets that you can safely ignore), and probably many others depending on which Unix
flavor you run. This document deals only with the first: Internet Sockets.

2.1. Two Types of Internet Sockets

What's this? There are two types of Internet sockets? Yes. Well, no. I'm lying. There are more,
but I didn't want to scare you. I'm only going to talk about two types here. Except for this sentence,
where I'm going to tell you that “Raw Sockets” are also very powerful and you should look them
up.

All right, already. What are the two types? One is “ Stream Sockets’; the other is“Datagram
Sockets’, which may hereafter be referred to as“ SOCK_STREAM' and “ SOCK_DGRAM', respectively.
Datagram sockets are sometimes called “ connectionless sockets’. (Though they can be
connect () 'dif you really want. See connect (), below.)

Stream sockets are reliable two-way connected communication streams. If you output two
items into the socket in the order “1, 2, they will arrivein the order “1, 2" at the opposite end. They
will also be error-free. I'm so certain, in fact, they will be error-free, that I'm just going to put my
fingersin my ears and chant lalalalaif anyonetries to claim otherwise.

What uses stream sockets? Well, you may have heard of the telnet application, yes? It uses
stream sockets. All the characters you type need to arrive in the same order you type them, right?
Also, web browsers use the HTTP protocol which uses stream sockets to get pages. Indeed, if you
telnet to aweb site on port 80, and type “GET / HTTP/ 1. 0” and hit RETURN twice, it'll dump the
HTML back at you!

Beej's Guide to Network Programming

How do stream sockets achieve this high level of data transmission quality? They use a
protocol called “The Transmission Control Protocol”, otherwise known as“TCP” (see RFC 793°
for extremely detailed info on TCP.) TCP makes sure your data arrives sequentially and error-free.
Y ou may have heard “TCP’ before as the better half of “TCP/IP” where “IP’ stands for “Internet
Protocol” (see RFC 791".) IP deals primarily with Internet routing and is not generally responsible
for dataintegrity.

Cool. What about Datagram sockets? Why are they called connectionless? What is the deal,
here, anyway? Why are they unreliable? Well, here are some facts: if you send a datagram, it may
arrive. It may arrive out of order. If it arrives, the data within the packet will be error-free.

Datagram sockets also use I P for routing, but they don't use TCP; they use the “ User Datagram
Protocol”, or “UDP” (see RFC 768°))

Why are they connectionless? Well, basically, it's because you don't have to maintain an open
connection as you do with stream sockets. Y ou just build a packet, slap an IP header on it with
destination information, and send it out. No connection needed. They are generally used either
when a TCP stack is unavailable or when afew dropped packets here and there don't mean the
end of the Universe. Sample applications: tftp, bootp, multiplayer games, streaming audio, video
conferencing, etc.

“Wait aminute! tftp and bootp are used to transfer binary applications from one host to
another! Data can't be lost if you expect the application to work when it arrives! What kind of dark
magic isthis?’

Well, my human friend, tftp and similar programs have their own protocol on top of UDP. For
example, the tftp protocol saysthat for each packet that gets sent, the recipient hasto send back a
packet that says, “I got it!” (an “ACK” packet.) If the sender of the original packet gets no reply in,
say, five seconds, he'll re-transmit the packet until he finally gets an ACK. This acknowledgment
procedure is very important when implementing reliable SOCK_DGRAMapplications.

For unreliable applications like games, you just ignore the dropped packets, or perhaps try
to cleverly compensate for them. (Quake players will know the manifestation this effect by the
technical term: #%%$@* lag.)

2.2. Low level Nonsense and Network Theory

Since | just mentioned layering of protocols, it's time to talk about how networks really work,
and to show some examples of how SOCK_DGRAMpackets are built. Practically, you can probably
skip this section. It's good background, however.

Ethernet |IP|UDP TFTPData

Data Encapsulation.

Hey, kids, it'stime to learn about Data Encapsulation! Thisis very very important. It's so
important that you might just learn about it if you take the networks course here at Chico State; -) .
Basically, it saysthis: a packet is born, the packet is wrapped (“encapsulated”) in a header (and
rarely afooter) by the first protocol (say, the TFTP protocol), then the whole thing (TFTP header

http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc768

What is a socket?

included) is encapsulated again by the next protocol (say, UDP), then again by the next (IP), then
again by the final protocol on the hardware (physical) layer (say, Ethernet).
When another computer receives the packet, the hardware strips the Ethernet header, the kernel
strips the P and UDP headers, the TFTP program strips the TFTP header, and it finally has the data.
Now | can finally talk about the infamous Layered Network Model (aka“I1SO/OSI”). This
Network Model describes a system of network functionality that has many advantages over other
models. For instance, you can write sockets programs that are exactly the same without caring how
the datais physically transmitted (serial, thin Ethernet, AUI, whatever) because programs on lower
levels deal with it for you. The actual network hardware and topology is transparent to the socket
programmer.

Without any further ado, I'll present the layers of the full-blown model. Remember this for
network class exams:

» Application
* Presentation
* Session
Transport
Network
Data Link
 Physical

The Physical Layer isthe hardware (serial, Ethernet, etc.). The Application Layer is just about
as far from the physical layer as you can imagine—it's the place where users interact with the
network.

Now, thismodel is so general you could probably use it as an automobile repair guide if you
really wanted to. A layered model more consistent with Unix might be:

» Application Layer (telnet, ftp, etc.)

» Host-to-Host Transport Layer (TCP, UDP)

* Internet Layer (IP and routing)

» Network Access Layer (Ethernet, ATM, or whatever)

At this point in time, you can probably see how these layers correspond to the encapsulation of
the original data.

See how much work thereisin building a simple packet? Jeez! And you have to typein the
packet headers yourself using “cat”! Just kidding. All you have to do for stream socketsissend()
the data out. All you have to do for datagram sockets is encapsul ate the packet in the method of
your choosing and sendt o() it out. The kernel builds the Transport Layer and Internet Layer on
for you and the hardware does the Network Access Layer. Ah, modern technology.

So ends our brief foray into network theory. Oh yes, | forgot to tell you everything | wanted
to say about routing: nothing! That's right, I'm not going to talk about it at all. The router strips the

8

Beej's Guide to Network Programming

packet to the | P header, consultsits routing table, blah blah blah. Check out the IP RFC? if you
really redly care. If you never learn about it, well, you'll live.

9.http://tools.ietf.org/htm/rfc791

http://tools.ietf.org/html/rfc791

3. struct s and Data Handling

WEell, we're finally here. It'stime to talk about programming. In this section, I'll cover various
data types used by the sockets interface, since some of them are areal bear to figure out.

First the easy one: a socket descriptor. A socket descriptor isthe following type:

‘int |

Just aregulari nt .

Things get weird from here, so just read through and bear with me. Know this: there are two
byte orderings: most significant byte (sometimes called an “octet”) first, or least significant byte
first. The former is called “Network Byte Order”. Some machines store their numbersinternally in
Network Byte Order, some don't. When | say something has to be in Network Byte Order, you have
to call afunction (such asht ons()) to change it from “Host Byte Order”. If | don't say “Network
Byte Order”, then you must leave the value in Host Byte Order.

(For the curious, “Network Byte Order” is also known as “Big-Endian Byte Order”.)

My First Struct™—st ruct sockaddr . This structure holds socket address information for
many types of sockets:

struct sockaddr {
unsi gned short sa_famly; /1 address family, AF_xxx
char sa_data[14]; [// 14 bytes of protocol address

sa_fami | y can beavariety of things, but it'll be AF_I NET for everything we do in this
document. sa_dat a contains a destination address and port number for the socket. Thisis rather
unwieldy since you don't want to tediously pack the addressin the sa_dat a by hand.

To deal with st ruct sockaddr, programmers created a parallel structure: st r uct
sockaddr _i n (“in” for “Internet”.)

struct sockaddr _in {

short int sin_famly; // Address famly

unsi gned short int sin_port; /1 Port nunber

struct in_addr si n_addr; /1 I nternet address

unsi gned char sin_zero[8]; // Same size as struct sockaddr

This structure makes it easy to reference elements of the socket address. Note that si n_zer o
(whichisincluded to pad the structure to the length of ast ruct sockaddr) should be set to
all zeros with the function menset () . Also, and thisis the important bit, a pointer to ast r uct
sockaddr _i n can be cast to apointer toast ruct sockaddr and vice-versa. So even though
connect () wantsastruct sockaddr*, you can till useast ruct sockaddr _i n and cast it at
the last minute! Also, noticethat si n_f ami | y correspondstosa_family inastruct sockaddr
and should be set to “AF_I NET”. Finally, thesi n_port and si n_addr must be in Network Byte
Order!

“But,” you object, “how can the entire structure, st ruct i n_addr si n_addr, bein
Network Byte Order?’ This question requires careful examination of the structure st r uct
i n_addr , one of the worst unions alive:
/'l Internet address (a structure for historical reasons)

struct in_addr {
uint32_t s_addr; // that's a 32-bit int (4 bytes)

10

Beej's Guide to Network Programming

[} |

Well, it used to be a union, but now those days seem to be gone. Good riddance. So if you have
declared i na to be of typest ruct sockaddr _i n, theni na. si n_addr. s_addr referencesthe
4-byte IP address (in Network Byte Order). Note that even if your system still uses the God-awful
union for st ruct i n_addr, you can still reference the 4-byte IP address in exactly the same way
as| did above (thisdue to #def i nes.)

3.1. Convert the Natives!

We've now been lead right into the next section. There's been too much talk about this
Network to Host Byte Order conversion—now is the time for action!

All righty. There are two types that you can convert: short (two bytes) and | ong (four bytes).
These functions work for the unsi gned variations as well. Say you want to convert ashort from
Host Byte Order to Network Byte Order. Start with “h” for “host”, follow it with “to”, then “n” for
“network”, and “s’ for “short”: h-to-n-s, or ht ons() (read: “Host to Network Short”).

It's almost too easy ...

Y ou can use every combination of “n”, “h”, “s’, and “I” you want, not counting the really
stupid ones. For example, thereisNOT ast ol h() (“Short to Long Host”) function—not at this
party, anyway. But there are:

htons() hostt o network short
htonl () hostto network | ong
ntohs() networkt o host short
ntohl () networkto host| ong

Now, you may think you're wising up to this. Y ou might think, “What do | do if | haveto
change byte order on achar ?” Then you might think, “Uh, never mind.” Y ou might also think that
since your 68000 machine already uses network byte order, you don't haveto call ht onl () onyour
| P addresses. Y ou would beright, BUT if you try to port to a machine that has reverse network byte
order, your program will fail. Be portable! ThisisaUnix world! (As much as Bill Gates would like
to think otherwise.) Remember: put your bytesin Network Byte Order before you put them on the
network.

A fina point: why do si n_addr and si n_port need to bein Network Byte Order in a
struct sockaddr _in, butsin_fani |y doesnot? Theanswer: si n_addr andsi n_port get
encapsulated in the packet at the IP and UDP layers, respectively. Thus, they must be in Network
Byte Order. However, thesi n_f ani | y field isonly used by the kernel to determine what type of
address the structure contains, so it must be in Host Byte Order. Also, sincesi n_f ani | y does not
get sent out on the network, it can be in Host Byte Order.

3.2. IP Addresses and How to Deal With Them

Fortunately for you, there are a bunch of functions that allow you to manipulate |P addresses.
No need to figure them out by hand and stuff themin al ong with the << operator.

First, let'ssay you have ast ruct sockaddr _i n i na, and you have an |P address
“10.12. 110. 57" that you want to store into it. The function you want to use, i net _addr (),
converts an | P address in numbers-and-dots notation into an unsigned long. The assignment can be
made as follows:

‘i na.si n_addr.s_addr = inet_addr("10.12.110.57"); |

structs and Data Handling

Noticethat i net _addr () returnsthe addressin Network Byte Order already—you don't have
tocal ht onl (). Swell!

Now, the above code snippet isn't very robust because there is no error checking. See,
i net _addr () returns- 1 on error. Remember binary numbers? (unsi gned) - 1 just happens
to correspond to the IP address 255. 255. 255. 255! That's the broadcast address! Wrongo.
Remember to do your error checking properly.

Actualy, there's a cleaner interface you can use instead of i net _addr () : it'scalled
i net _aton() (“aton” means“ascii to network”):

#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpalinet. h>

int inet_aton(const char *cp, struct in_addr *inp);
And here's a sample usage, while packing ast ruct sockaddr _i n (this example will make
more sense to you when you get to the sectionson bi nd() and connect () .)

struct sockaddr _in my_addr

my_addr.sin_fam |y = AF_|I NET; /1l host byte order
ny_addr. si n_port = htons(MYPORT); /'l short, network byte order
i net _aton("10.12.110.57", &(ny_addr.sin_addr));
nmenset (ny_addr.sin_zero, '\0', sizeof ny_addr.sin_zero);

i net _at on(), unlike practically every other socket-related function, returns non-zero on
success, and zero on failure. And the address is passed back ini np.

Unfortunately, not all platformsimplement i net _at on() so, although its useis preferred, the

older more common i net _addr () isusedinthisguide.

All right, now you can convert string | P addresses to their binary representations. What
about the other way around? What if you haveast ruct i n_addr and you want to print it in
numbers-and-dots notation? In this case, you'll want to use the functioni net _nt oa() (“ntoa’
means “ network to ascii”) like this:
‘printf("@&", i net _ntoa(ina.sin_addr)); |

That will print the IP address. Notethat i net _nt oa() takesastruct in_addr asan
argument, not al ong. Also notice that it returns a pointer to a char. This points to a statically stored
char array withini net _nt oa() sothat eachtimeyou cal i net _nt oa() it will overwrite the last
| P address you asked for. For example:

char *al, *a2

al = inet_ntoa(inal.sin_addr); // this is 192.168.4.14
a2 i net_ntoa(ina2.sin_addr); // this is 10.12.110.57
printf("address 1: %\n", al);
printf("address 2: %\n", a2);

will print:

address 1: 10.12.110.57
address 2: 10.12.110.57

If you need to save the address, st r cpy() it to your own character array.
That's all on thistopic for now. Later, you'll learn to convert a string like “whitehouse.gov”
into its corresponding I P address (see DNS, below.)

11

12

Beej's Guide to Network Programming

3.2.1. Private (Or Disconnected) Networks

Lots of places have afirewall that hides the network from the rest of the world for their
own protection. And often times, the firewall translates “internal” |P addresses to “ external”

(that everyone else in the world knows) | P addresses using a process called Network Address
Tranglation, or NAT.

Areyou getting nervous yet? “Where's he going with all thisweird stuff?’

WEell, relax and buy yourself adrink, because as a beginner, you don't even have to worry
about NAT, sinceit's done for you transparently. But | wanted to talk about the network behind the
firewall in case you started getting confused by the network numbers you were seeing.

For instance, | have afirewall at home. | have two static | P addresses allocated to me by
the DSL company, and yet | have seven computers on the network. How is this possible? Two
computers can't share the same IP address, or else the data wouldn't know which one to go to!

The answer is. they don't share the same | P addresses. They are on a private network with 24
million |P addresses allocated to it. They are all just for me. Well, all for me asfar asanyone elseis
concerned. Here's what's happening:

If | log into a remote compulter, it tells me I'm logged in from 64.81.52.10 (not my real 1P). But
if I ask my local computer what it's P addressis, it says 10.0.0.5. Who is trandlating the |P address
from one to the other? That's right, the firewall! It's doing NAT!

10.x.x.x isone of afew reserved networks that are only to be used either on fully disconnected
networks, or on networks that are behind firewalls. The details of which private network numbers
are available for you to use are outlined in RFC 1918*, but some common ones you'll see are
10.x.x.x and 192.168.x.x, where x is 0-255, generally. Less common is 172.y.x.x, where y goes
between 16 and 31.

Networks behind a NATing firewall don't need to be on one of these reserved networks, but
they commonly are.

10.http://tools.ietf.org/htm/rfc1918

http://tools.ietf.org/html/rfc1918

4. System Calls or Bust

Thisisthe section where we get into the system calls that allow you to access the network
functionality of a Unix box. When you call one of these functions, the kernel takes over and does all
the work for you automagically.

The place most people get stuck around here iswhat order to call these thingsin. In that, the
man pages are no use, as you've probably discovered. Well, to help with that dreadful situation, I've
tried to lay out the system calls in the following sections in exactly (approximately) the same order
that you'll need to call them in your programs.

That, coupled with afew pieces of sample code here and there, some milk and cookies (which
| fear you will have to supply yourself), and some raw guts and courage, and you'll be beaming data
around the Internet like the Son of Jon Postel!

4.1. socket () —Get the File Descriptor!
| guess| can put it off no longer—I have to talk about the socket () system call. Here'sthe
breakdown:

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt socket(int domain, int type, int protocol);

But what are these arguments? First, domai n should be set to “PF_I NET”. Next, thet ype
argument tells the kernel what kind of socket thisis: SOCK_STREAMor SOCK_DGRAM Finally, just
set pr ot ocol to“0” to havesocket () choose the correct protocol based onthet ype. (Notes:
there are many more domai nsthan I've listed. There are many moret ypesthan I've listed. See the
socket () man page. Also, there's a“better” way to get the pr ot ocol , but specifying 0 worksin
99.9% of all cases. Seethe get pr ot obynane() man page if you're curious.)

socket () simply returns to you a socket descriptor that you can usein later system calls, or
- 1 onerror. The global variable er r no is set to the error's value (see the per r or () man page.)

(ThisPF_I NET thing is aclose relative of the AF_| NET that you used when initializing the
sin_fam |y fieldinyour st ruct sockaddr _i n. Infact, they're so closely related that they
actually have the same value, and many programmerswill call socket () and pass AF_|I NET asthe
first argument instead of PF_I NET. Now, get some milk and cookies, because it's times for a story.
Once upon atime, along time ago, it was thought that maybe a address family (what the “AF”
in“AF_I NET” stands for) might support several protocols that were referred to by their protocol
family (what the “PF” in“PF_I NET” stands for). That didn't happen. And they all lived happily ever
after, The End. So the most correct thing to do isto use AF_I NET inyour st ruct sockaddr _i n
and PF_| NET in your call to socket () .)

Fine, fine, fine, but what good is this socket? The answer isthat it's really no good by itself,
and you need to read on and make more system calls for it to make any sense.

4.2. bi nd() —What port am | on?

Once you have a socket, you might have to associate that socket with a port on your local
machine. (Thisis commonly doneif you'regoingtol i st en() for incoming connectionson a
specific port—MUDs do this when they tell you to “telnet to x.y.z port 6969”.) The port number

13

14

Beej's Guide to Network Programming

is used by the kernel to match an incoming packet to a certain process's socket descriptor. If you're
going to only be doing aconnect (), thismay be unnecessary. Read it anyway, just for kicks.
Hereisthe synopsisfor the bi nd() system call:

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int bind(int sockfd, struct sockaddr *ny_addr, int addrlen);

sockf d isthe socket file descriptor returned by socket () . my_addr isapointer toast r uct
sockaddr that contains information about your address, namely, port and |P address. addr | en can
besettosi zeof *mny_addr orsi zeof (struct sockaddr).

Whew. That's a bit to absorb in one chunk. Let's have an example:

#i ncl ude <string. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpal/inet. h>

#def i ne MYPORT 3490

i nt mai n(voi d)
{
i nt sockfd;
struct sockaddr_in my_addr

sockfd = socket (PF_I NET, SOCK STREAM 0); // do sone error checking!

my_addr.sin_famly = AF_|I NET; /1l host byte order

ny_addr. sin_port = ht ons(MYPORT); /] short, network byte order
ny_addr. sin_addr.s_addr = inet_addr("10.12.110.57");

nmenset (ny_addr.sin_zero, '\0', sizeof ny_addr.sin_zero);

/1 don't forget your error checking for bind():
bi nd(sockfd, (struct sockaddr *)&my_addr, sizeof ny_addr);

There are afew things to notice here: my_addr . si n_port isin Network Byte Order. Sois
my_addr . si n_addr. s_addr . Another thing to watch out for is that the header files might differ
from system to system. To be sure, you should check your local man pages.

Lastly, on the topic of bi nd(), | should mention that some of the process of getting your own
| P address and/or port can be automated:

ny_addr.sin_port = 0; // choose an unused port at random
nmy_addr.sin_addr.s_addr = | NADDR _ANY; // use ny |P address

See, by setting my_addr . si n_port to zero, you are telling bi nd() to choose the port for
you. Likewise, by setting ny_addr . si n_addr. s_addr to| NADDR_ANY, you aretelling it to
automatically fill in the IP address of the machine the process is running on.

If you areinto noticing little things, you might have seen that | didn't put | NADDR_ANY into
Network Byte Order! Naughty me. However, | haveinside info: | NADDR_ANY isreally zero! Zero
still has zero on bits even if you rearrange the bytes. However, purists will point out that there could
be aparallel dimension where | NADDR_ANY is, say, 12 and that my code won't work there. That's
okay with me:

System Calls or Bust

ny_addr.sin_port = htons(0); // choose an unused port at random
nmy_addr. sin_addr.s_addr = htonl (I NADDR_ANY); // use ny |P address

Now we're so portable you probably wouldn't believeit. | just wanted to point that out, since
most of the code you come across won't bother running | NADDR_ANY through ht onl () .

bi nd() asoreturns- 1 on error and setser r no to the error's value.

Another thing to watch out for when calling bi nd() : don't go underboard with your port
numbers. All ports below 1024 are RESERVED (unless you're the superuser)! Y ou can have any
port number above that, right up to 65535 (provided they aren't already being used by another
program.)

Sometimes, you might notice, you try to rerun aserver and bi nd() fails, claiming “Address
already in use.” What does that mean? Well, alittle bit of a socket that was connected is till
hanging around in the kernel, and it's hogging the port. Y ou can either wait for it to clear (a minute
or so0), or add code to your program allowing it to reuse the port, like this:

int yes=1;
[lchar yes="1'; // Solaris people use this

/'l lose the pesky "Address already in use" error nmessage

i f (setsockopt(listener, SOL_SOCKET, SO REUSEADDR, &yes, si zeof (int)) == -1) {
perror ("setsockopt");
exit(1);

One small extrafinal note about bi nd() : there are times when you won't absolutely have to
call it. If you are connect () ing to aremote machine and you don't care what your local port is (as
isthe case with telnet where you only care about the remote port), you can simply call connect (),
it'll check to seeif the socket is unbound, and will bi nd() it to an unused local port if necessary.

4.3. connect () —Hey, you!

Let'sjust pretend for afew minutes that you're atelnet application. Y our user commands you
(just like in the movie TRON) to get a socket file descriptor. Y ou comply and call socket () . Next,
the user tells you to connect to “10. 12. 110. 57” on port “23” (the standard telnet port.) Y ow!
What do you do now?

Lucky for you, program, you're now perusing the section on connect () —how to connect to a
remote host. So read furiously onward! No time to lose!

Theconnect () cal isasfollows:

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt connect (int sockfd, struct sockaddr *serv_addr, int addrlen);

sockf d isour friendly neighborhood socket file descriptor, as returned by the socket () call,
serv_addr isastruct sockaddr containing the destination port and IP address, and addr | en
canbesettosi zeof *serv_addr orsi zeof (struct sockaddr).

Isn't this starting to make more sense? Let's have an example:
#i ncl ude <string. h>
#i ncl ude <sys/types. h>

#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>

#define DEST_IP "10.12.110.57"
#defi ne DEST_PORT 23

15

16

Beej's Guide to Network Programming

i nt mai n(voi d)
{
i nt sockfd;
struct sockaddr _in dest addr; /1 will hold the destination addr

sockfd = socket (PF_I NET, SOCK STREAM O0); // do sone error checking!

dest _addr.sin_fam |y = AF_I NET; /1 host byte order

dest _addr. sin_port = htons(DEST_PORT); /Il short, network byte order
dest _addr.sin_addr.s_addr = inet_addr(DEST_I P)

menset (dest _addr.sin_zero, '\0', sizeof dest_addr.sin_zero);

/1 don't forget to error check the connect()!
connect (sockfd, (struct sockaddr *)&dest_addr, sizeof dest_addr);

Again, be sure to check the return value from connect () —it'll return - 1 on error and set the
variableer r no.

Also, notice that we didn't call bi nd() . Basically, we don't care about our local port number;
we only care where we're going (the remote port). The kernel will choose alocal port for us, and the
site we connect to will automatically get thisinformation from us. No worries.

4.4.11sten()—Will somebody please call me?

Ok, time for a change of pace. What if you don't want to connect to a remote host. Say, just for
kicks, that you want to wait for incoming connections and handle them in some way. The processis
two step: firstyoul i st en(), thenyou accept () (seebelow.)

Thelisten call isfairly ssimple, but requires abit of explanation:

‘int listen(int sockfd, int backlog); |

sockf d isthe usual socket file descriptor from the socket () system call. backl og isthe
number of connections allowed on the incoming queue. What does that mean? Well, incoming
connections are going to wait in this queue until you accept () them (see below) and thisisthe
[imit on how many can queue up. Most systems silently limit this number to about 20; you can
probably get away with setting itto 5 or 10.

Again, asperusua, | i sten() returns- 1 and setser r no on error.

WEell, as you can probably imagine, we need to call bi nd() beforewecall I i sten() or
the kernel will have us listening on arandom port. Bleah! So if you're going to be listening for
incoming connections, the sequence of system callsyou'll makeis:

socket () ;

bi nd() ;

listen();

/* accept() goes here */
I'll just leave that in the place of sample code, sinceit's fairly self-explanatory. (The code in the

accept () section, below, is more complete.) The redly tricky part of this whole sha-bang is the

call toaccept ().

4.5. accept () —“Thank you for calling port 3490.”
Get ready—the accept () cal iskindaweird! What's going to happen is this. someone far
far away will try to connect () to your machine on aport that you arel i st en() ing on. Their

System Calls or Bust

connection will be queued up waiting to beaccept () ed. You call accept () and you tell it to get
the pending connection. It'll return to you a brand new socket file descriptor to use for this single
connection! That's right, suddenly you have two socket file descriptors for the price of one! The
original oneis till listening on your port and the newly created oneisfinally ready to send() and
recv() . Weretherel

The call isasfollows:

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

sockf d isthel i st en() ing socket descriptor. Easy enough. addr will usually be a pointer to
alocal struct sockaddr _i n. Thisiswhere the information about the incoming connection will
go (and with it you can determine which host is calling you from which port). addr | en isaloca
integer variable that should be set to si zeof *addr or si zeof (struct sockaddr_i n) before
itsaddress is passed to accept () . Accept will not put more than that many bytesinto addr . If it
puts fewer in, it'll change the value of addr | en to reflect that.

Guesswhat?accept () returns- 1 and setser r no if an error occurs. Betcha didn't figure that.

Like before, thisis a bunch to absorb in one chunk, so here's a sample code fragment for your
perusal:

#i ncl ude <string. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>

#defi ne MYPORT 3490 // the port users will be connecting to
#defi ne BACKLOG 10 /1 how many pendi ng connections queue will hold

i nt mai n(voi d)
{
int sockfd, newfd; // listen on sock fd, new connection on new fd
struct sockaddr_in my_addr; /1 nmy address information
struct sockaddr _in their_addr; // connector's address informtion
int sin_size;

sockfd = socket (PF_I NET, SOCK STREAM 0); // do sonme error checking!
ny_addr.sin_fam |y = AF_| NET; /1 host byte order
ny_addr.sin_port = htons(MYPORT); /'l short, network byte order
nmy_addr.sin_addr.s_addr = | NADDR ANY; // auto-fill with my IP
menset (ny_addr.sin_zero, '\0', sizeof ny_addr.sin_zero);

/1 don't forget your error checking for these calls:
bi nd(sockfd, (struct sockaddr *)&my_addr, sizeof ny_addr);

l'i sten(sockfd, BACKLOG ;

sin_size = sizeof their_addr
new fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size);

17

18

Beej's Guide to Network Programming

Again, note that we will use the socket descriptor new f d for all send() andrecv() cals. If
you're only getting one single connection ever, you can cl ose() thelistening sockf d in order to
prevent more incoming connections on the same port, if you so desire.

4.6.send() and recv() —Talk to me, baby!

These two functions are for communicating over stream sockets or connected datagram
sockets. If you want to use regular unconnected datagram sockets, you'll need to see the section on
sendto() andrecvfron(), below.

Thesend() call:

‘int send(int sockfd, const void *nmsg, int len, int flags);

sockf d isthe socket descriptor you want to send data to (whether it's the one returned by
socket () or the one you got with accept () .) nsg isapointer to the data you want to send, and
| en isthe length of that datain bytes. Just set f | ags t0 0. (Seethe send() man page for more
information concerning flags.)

Some sample code might be:

char *nsg = "Beej was here!"
int len, bytes_sent;

len = strlen(nsg);
bytes_sent = send(sockfd, nsg, |en, 0);

send() returnsthe number of bytes actually sent out—this might be less than the number you
told it to send! See, sometimes you tell it to send awhole gob of data and it just can't handleit. It'll
fire off as much of the data asit can, and trust you to send the rest later. Remember, if the value
returned by send() doesn't match thevaluein| en, it's up to you to send the rest of the string. The
good newsisthis: if the packet issmall (lessthan 1K or so) it will probably manage to send the
whole thing all in one go. Again, - 1 isreturned on error, and er r no is Set to the error number.
Therecv() cal issimilar in many respects:

‘int recv(int sockfd, void *buf, int |len, unsigned int flags);

sockf d isthe socket descriptor to read from, buf isthe buffer to read the information into,
| en isthe maximum length of the buffer, and f | ags can again be setto 0. (Seether ecv() man
page for flag information.)

recv() returnsthe number of bytes actually read into the buffer, or - 1 on error (witherrno
set, accordingly.)

Wait! recv() canreturn 0. This can mean only one thing: the remote side has closed the
connection on you! A return value of 0 isr ecv() 'sway of letting you know this has occurred.

There, that was easy, wasn't it? Y ou can now pass data back and forth on stream sockets!
Whee! You're aUnix Network Programmer!

4.7.sendto() and recvfrom) —Talk to me, DGRAM-style
“Thisisal fine and dandy,” | hear you saying, “but where does this |leave me with
unconnected datagram sockets?” No problemo, amigo. We have just the thing.

System Calls or Bust

Since datagram sockets aren't connected to a remote host, guess which piece of information we
need to give before we send a packet? That's right! The destination address! Here's the scoop:

int sendto(int sockfd, const void *nmsg, int |en, unsigned int flags,
const struct sockaddr *to, socklen_t tolen);

Asyou can see, this call is basically the same as the call to send() with the addition of two
other pieces of information. t o isapointer toast ruct sockaddr (whichyou'll probably have as
astruct sockaddr _i n and castit at the last minute) which contains the destination | P address
and port. t ol en, ani nt deep-down, can ssimply be set to si zeof *to orsi zeof (struct
sockaddr) .

Just likewith send() , sendt o() returnsthe number of bytes actually sent (which, again,
might be less than the number of bytes you told it to send!), or - 1 on error.

Equally similar arer ecv() andrecvfron() . Thesynopsisof recvfron() is
int recvfron(int sockfd, void *buf, int len, unsigned int flags,

struct sockaddr *from int *fromen);

Again, thisisjust liker ecv() with the addition of acouplefields. f r omisa pointer to
alocal struct sockaddr that will befilled with the IP address and port of the originating
machine. f rom en isapointer to alocal i nt that should beinitialized to si zeof *fromor
si zeof (struct sockaddr).When thefunction returns, f r om en will contain the length of the
address actually stored inf r om

recvfron() returnsthe number of bytesreceived, or - 1 on error (with er r no set
accordingly.)

Remember, if you connect () adatagram socket, you can then simply usesend() and
recv() for al your transactions. The socket itself is still a datagram socket and the packets still use
UDP, but the socket interface will automatically add the destination and source information for you.

4.8. cl ose() and shut down() —Get outta my face!

Whew! You've been send() ingandrecv() ing dataall day long, and you've had it. You're
ready to close the connection on your socket descriptor. Thisiseasy. You can just use the regular
Unix file descriptor cl ose() function:

‘close(sockfd); |

Thiswill prevent any more reads and writes to the socket. Anyone attempting to read or write
the socket on the remote end will receive an error.

Just in case you want alittle more control over how the socket closes, you can use the
shut down() function. It allows you to cut off communication in a certain direction, or both ways
(ust likecl ose() does.) Synopsis:

‘int shutdown(int sockfd, int how:; |

sockf d isthe socket file descriptor you want to shutdown, and how is one of the following:

0 Further receives are disallowed
1 Further sends are disalowed
2 Further sends and receives are disallowed (likecl ose())

shut down() returns0 on success, and - 1 on error (with er r no set accordingly.)

19

20

Beej's Guide to Network Programming

If you deign to use shut down(') on unconnected datagram sockets, it will simply make the
socket unavailable for further send() andrecv() calls(remember that you can use theseif you
connect () your datagram socket.)

It's important to note that shut down() doesn't actually close the file descriptor—it just
changesits usability. To free a socket descriptor, you need to usecl ose() .

Nothing to it.

(Except to remember that if you're using Windows and Winsock that you should call
cl osesocket () instead of cl ose().)

4.9. get peer nane() —Who are you?

Thisfunction is so easy.

It'sso easy, | almost didn't giveit it's own section. But hereit is anyway.

The function get peer nane() will tell you who is at the other end of a connected stream
socket. The synopsis:

#i ncl ude <sys/socket. h>

i nt getpeernane(int sockfd, struct sockaddr *addr, int *addrlen);

sockf d isthe descriptor of the connected stream socket, addr isapointer to ast r uct
sockaddr (orastruct sockaddr _in) that will hold the information about the other side of the
connection, and addr | en isapointer to ani nt , that should beinitialized to si zeof *addr or
si zeof (struct sockaddr).

The function returns - 1 on error and sets er r no accordingly.

Once you have their address, you can usei net _nt oa() or get host byaddr () to print or get
more information. No, you can't get their login name. (Ok, ok. If the other computer is running an
ident daemon, thisis possible. This, however, is beyond the scope of this document. Check out RFC
1413* for moreinfo.)

4.10. get host nane() —Who am 1?

Even easier than get peer nane() isthefunction get host nane() . It returns the name of
the computer that your program is running on. The name can then be used by get host bynane() ,
below, to determine the IP address of your local machine.

What could be more fun? | could think of afew things, but they don't pertain to socket
programming. Anyway, here's the breakdown:

#i ncl ude <uni std. h>

i nt get hostname(char *hostnane, size_t size);

The arguments are simple: host nane isa pointer to an array of charsthat will contain the
hostname upon the function'sreturn, and si ze isthe length in bytes of the host nane array.
The function returns 0 on successful completion, and - 1 on error, setting er r no as usual.

4.11. DNS—You say “whitehouse.gov”, | say “63.161.169.137”"

In case you don't know what DNS s, it stands for “Domain Name Service’. In a nutshell, you
tell it what the human-readable addressisfor asite, and it'll give you the IP address (so you can use
it with bi nd(), connect (), sendt o(), or whatever you need it for.) This way, when someone
enters.

11.http://tools.ietf.org/htm/rfcl413

http://tools.ietf.org/html/rfc1413
http://tools.ietf.org/html/rfc1413

System Calls or Bust

telnet can find out that it needsto connect () t0“63.161.169.137".
But how does it work? Y ou'll be using the function get host bynane() :

#i ncl ude <net db. h>

struct hostent *gethost bynanme(const char *nane);

Asyou see, it returnsapointer toa st ruct host ent, the layout of which isasfollows:

struct hostent {

char *h_ nane;

char **h_aliases;

i nt h_addrt ype;

i nt h_| engt h;

char **h_addr _|ist;

IE
#define h_addr h_addr _|ist[0]

And here are the descriptions of the fieldsinthe st ruct hostent:

h_nane Officia name of the host.

h_al i ases A NULL-terminated array of alternate names for the host.
h_addrtype The type of address being returned; usually AF_I NET.

h_l engt h The length of the address in bytes.

h_addr _|i st A zero-terminated array of network addresses for the host. Host addresses
arein Network Byte Order.

h_addr Thefirst addressinh_addr _|i st.

get host bynanme() returnsapointer to thefilled st ruct host ent, or NULL on error. (But
errno isnot set—h_errno issetinstead. Seeherror (), below.)

But how isit used? Sometimes (as we find from reading computer manuals), just spewing the
information at the reader is not enough. Thisfunction is certainly easier to use than it looks.

Here's an example program*:

/*
** getip.c -- a hostnane | ookup deno
*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <errno. h>
#i ncl ude <net db. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in. h>
#i ncl ude <arpalinet. h>

int main(int argc, char *argv[])

{
struct hostent *h;
if (argc '=2) { [/ error check the conmand |ine
fprintf(stderr,"usage: getip address\n");
exit(1);
}

12.htt p: // beej . us/ gui de/ bgnet / exanpl es/ geti p.c

21

http://beej.us/guide/bgnet/examples/getip.c

22 Beej's Guide to Network Programming

i f ((h=gethostbynane(argv[1])) == NULL) { // get the host info
herror (" get host bynane") ;
exit(1);

}

printf("Host nane : %\n", h->h_nane);
printf("IP Address : %\n", inet_ntoa(*((struct in_addr *)h->h_addr)));

return O;

With get host bynane(), you can't use per r or () to print error message (since er r no is not
used). Instead, call herror ().

It's pretty straightforward. Y ou simply pass the string that contains the machine name
(“whitehouse.gov”) to get host bynane() , and then grab the information out of the returned
struct hostent.

The only possible weirdness might be in the printing of the IP address, above. h- >h_addr
isachar*, buti net _ntoa() wantsastruct in_addr passedtoit. Sol cast h->h_addr toa
struct in_addr*,then dereferenceit to get at the data.

5. Client-Server Background

It's a client-server world, baby. Just about everything on the network deals with client
processes talking to server processes and vice-versa. Taketelnet, for instance. When you connect to
aremote host on port 23 with telnet (the client), a program on that host (called telnetd, the server)
springs to life. It handles the incoming telnet connection, sets you up with alogin prompt, etc.

request

recv ()

Client | ~ = | Server

{ response

Client-Server I nteraction.

The exchange of information between client and server is summarized in the above diagram.

Note that the client-server pair can speak SOCK_STREAM SOCK_DGRAM or anything else
(aslong as they're speaking the same thing.) Some good examples of client-server pairs are
telnet/telnetd, ftp/ftpd, or bootp/bootpd. Every time you use ftp, there's aremote program, ftpd,
that serves you.

Often, there will only be one server on a machine, and that server will handle multiple clients
using f or k() . The basic routineis: server will wait for a connection, accept () it,andfork() a
child processto handle it. Thisiswhat our sample server doesin the next section.

5.1. A Simple Stream Server
All this server doesis send the string “Hel | o, Wor | d!'\ n” out over a stream connection. All
you need to do to test this server isrun it in one window, and telnet to it from another with:

$ tel net renotehostnane 3490

where r enot ehost nane isthe name of the machine you're running it on.
The server code™: (Note: atrailing backslash on aline means that the line is continued on the
next.)
/ *
** server.c -- a stream socket server denp
o

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <errno. h>

#i ncl ude <string. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpalinet. h>
#i ncl ude <sys/wait.h>
#i ncl ude <si gnal . h>

13.htt p: // beej . us/ gui de/ bgnet / exanpl es/ server.c

23

http://beej.us/guide/bgnet/examples/server.c

24

Beej's Guide to Network Programming

#defi ne MYPORT 3490 // the port users will be connecting to
#defi ne BACKLOG 10 // how many pendi ng connections queue wi ||

voi d sigchl d_handl er(int s)
{

}

int main(void)

{

whi | e(wai tpid(-1, NULL, WNOHANG > 0);

struct sockaddr_in my_addr; // nmy address information

sockl en_t sin_size;
struct sigaction sa

i nt yes=1;

if ((sockfd = socket (AF_I NET, SOCK STREAM 0)) == -1) {
perror("socket");
exit(1);

}

perror("setsockopt");

sa.sa_handl er = sigchld_handler; // reap all dead processes
si genpt yset (&sa. sa_mask)
sa.sa_flags = SA RESTART
if (sigaction(SIGCHLD, &sa, NULL) == -1) {
perror("sigaction");
exit(1);
}

while(1) { // main accept() |oop
sin_size = sizeof their_addr

&sin_size)) == -1) {
perror("accept");
conti nue;
}
printf("server: got connection from%\n", \
i net _ntoa(their_addr.sin_addr));

hol d

int sockfd, new fd; // listen on sock_fd, new connection on new fd

struct sockaddr _in their_addr; // connector's address information

i f (setsockopt(sockfd, SOL_SOCKET, SO REUSEADDR, &yes, sizeof(int)) == -

exit(1);
}
ny_addr.sin_famly = AF_| NET; /'l host byte order
ny_addr. si n_port = htons(MYPORT); /'l short, network byte order
nmy_addr. sin_addr.s_addr = | NADDR_ANY; // autommtically fill with ny IP
menset (ny_addr.sin_zero, '\0', sizeof ny_addr.sin_zero);
i f (bind(sockfd, (struct sockaddr *)&my_addr, sizeof ny_addr) == -1) {
perror("bind");
exit(1);
}
if (listen(sockfd, BACKLOG == -1) {
perror("listen");
exit(1);
}

if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr, \

LR

Client-Server Background

if (!fork()) { // this is the child process
cl ose(sockfd); // child doesn't need the I|istener
if (send(new fd, "Hello, world!\n", 14, 0) == -1)
perror("send");
cl ose(new_fd);
exit(0);

cl ose(new fd); // parent doesn't need this

}

return O;

In case you're curious, | have the codein one big mai n() function for (I feel) syntactic clarity.
Feel freeto split it into smaller functionsif it makes you feel better.

(Also, thiswholesi gact i on() thing might be new to you—that's ok. The code that'sthereis
responsible for reaping zombie processes that appear asthe f or k() ed child processes exit. If you
make lots of zombies and don't reap them, your system administrator will become agitated.)

Y ou can get the data from this server by using the client listed in the next section.

5.2. A Simple Stream Client
This guy's even easier than the server. All this client does is connect to the host you specify on
the command line, port 3490. It gets the string that the server sends.

The client source™:

/*
** client.c -- a stream socket client denp
=

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <errno. h>

#i ncl ude <string. h>

#i ncl ude <net db. h>

#i ncl ude <sys/types. h>
#i ncl ude <netinet/in.h>
#i ncl ude <sys/socket. h>

#defi ne PORT 3490 // the port client will be connecting to
#def i ne MAXDATASI ZE 100 // max nunber of bytes we can get at once

int main(int argc, char *argv[])
{
i nt sockfd, nunbytes;
char buf [MAXDATASI ZE] ;
struct hostent *he;
struct sockaddr_in their_addr; // connector's address informtion

if (argc !'= 2) {
fprintf(stderr,"usage: client hostname\n");
exit(1);

}

i f ((he=get host bynanme(argv[1])) == NULL) { // get the host info

herror (" get host bynane") ;
14.htt p: // beej . us/ gui de/ bgnet / exanpl es/client.c

25

http://beej.us/guide/bgnet/examples/client.c

Beej's Guide to Network Programming

exit(1);

}

if ((sockfd = socket (PF_I NET, SOCK_STREAM 0)) == -1) {
perror("socket");
exit(1);

}

their_addr.sin_famly = AF_I NET; /'l host byte order

their_addr.sin_port = htons(PORT); // short, network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
menset (their_addr.sin_zero, '\0', sizeof their_addr.sin_zero);

i f (connect(sockfd, (struct sockaddr *)&their_addr

sizeof their_addr) == -1) {
perror("connect");
exit(1);
}
i f ((nunbytes=recv(sockfd, buf, MAXDATASIZE-1, 0)) == -1) {
perror("recv");
exit(1);
}

buf [numbytes] = "\0'
printf("Received: %", buf);
cl ose(sockfd);

return O;

Notice that if you don't run the server before you run the client, connect () returns
“Connection refused”. Very useful.

5.3. Datagram Sockets
| really don't have that much to talk about here, so I'll just present a couple of sample
programs: t al ker.c andl i st ener.c.

listener sits on a machine waiting for an incoming packet on port 4950. talker sends a packet
to that port, on the specified machine, that contains whatever the user enters on the command line.

Hereisthe sourcefor | i st ener.c™:

/*
** |jstener.c -- a datagram sockets "server" denp
*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpal/inet. h>

#defi ne MYPORT 4950 // the port users will be connecting to
15.htt p: // beej . us/ gui de/ bgnet / exanpl es/ | i stener.c

http://beej.us/guide/bgnet/examples/listener.c

Client-Server Background

#def i ne MAXBUFLEN 100

i nt mai n(voi d)
{
i nt sockfd;
struct sockaddr_in my_addr; // my address infornation
struct sockaddr_in their_addr; // connector's address information
sockl en_t addr _Ien
i nt nunbyt es;
char buf [MAXBUFLEN] ;

if ((sockfd = socket (AF_I NET, SOCK DGRAM 0)) == -1) {
perror("socket");
exit(1);

}

ny_addr.sin_fam |y = AF_| NET; /1 host byte order
ny_addr.sin_port = htons(MYPORT); /1 short, network byte order
ny_addr. si n_addr.s_addr = | NADDR _ANY; // automatically fill with ny IP
nmenset (ny_addr.sin_zero, '\0', sizeof ny_addr.sin_zero);

i f (bind(sockfd, (struct sockaddr *)&mry_addr, sizeof ny_addr) == -1) {
perror("bind");
exit(1);

}

addr _| en = sizeof their_addr;
if ((nunbytes = recvfron(sockfd, buf, MAXBUFLEN-1 , O,
(struct sockaddr *)& heir_addr, &ddr_len)) == -1) {
perror("recvfron')
exit(1);
}
printf("got packet from %\n",inet_ntoa(their_addr.sin_addr));
printf("packet is % bytes | ong\n", nunbytes);
buf [numbytes] = '"\0'
printf("packet contains \"%\"\n", buf);

cl ose(sockfd);

return O;

Notice that in our call to socket () we'refinaly using SOCK_DGRAM Also, note that there's no
needtoli sten() oraccept (). Thisisone of the perks of using unconnected datagram sockets!
Next comes the source for t al ker . ¢ **:
/*
** talker.c -- a datagram "client" deno
%]

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>
#i ncl ude <sys/types. h>

16. htt p: // beej . us/ gui de/ bgnet / exanpl es/ tal ker. c

27

http://beej.us/guide/bgnet/examples/talker.c

28

Beej's Guide to Network Programming

#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpal/inet.h>
#i ncl ude <netdb. h>

#defi ne SERVERPORT 4950 // the port users will be connecting to

int main(int argc, char *argv[])
{
i nt sockfd;
struct sockaddr_in their_addr; // connector's address information
struct hostent *he;
i nt nunbyt es;

if (argc !'= 3) {
fprintf(stderr, "usage: tal ker hostnanme nessage\n");
exit(1);

}

i f ((he=gethostbynanme(argv[1])) == NULL) { // get the host info
herror (" get host bynane") ;
exit(1);

}

if ((sockfd = socket (AF_I NET, SOCK_DGRAM 0)) == -1) {
perror("socket");
exit(1);

}

their_addr.sin_fam |y = AF_I NET; /'l host byte order
their_addr.sin_port = htons(SERVERPORT); // short, network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);

menset (their_addr.sin_zero, '"\0', sizeof their_addr.sin_zero);

if ((nunbytes = sendto(sockfd, argv[2], strlen(argv[2]), O,
(struct sockaddr *)&their_addr, sizeof their_addr)) == -1) {
perror("sendto");
exit(1);
}
printf("sent %l bytes to %\n", nunbytes, inet_ntoa(their_addr.sin_addr));
cl ose(sockfd);

return O;

And that's all thereistoit! Run listener on some machine, then run talker on another. Watch

them communicate! Fun G-rated excitement for the entire nuclear family!

Except for one more tiny detail that I've mentioned many times in the past: connected
datagram sockets. | need to talk about this here, since we're in the datagram section of the
document. Let's say that talker callsconnect () and specifiesthe listener's address. From that
point on, talker may only sent to and receive from the address specified by connect () . For
this reason, you don't have to use sendt o() andr ecvf ron() ; you can smply use send() and
recv().

6. Slightly Advanced Techniques

These aren't really advanced, but they're getting out of the more basic levels we've aready
covered. In fact, if you've gotten this far, you should consider yourself fairly accomplished in the
basics of Unix network programming! Congratul ations!

So here we go into the brave new world of some of the more esoteric things you might want to
learn about sockets. Have at it!

6.1. Blocking

Blocking. Y ou've heard about it—now what the heck isit? In anutshell, “block” istechie
jargon for “sleep”. Y ou probably noticed that when you run listener, above, it just sits there
until a packet arrives. What happened isthat it called r ecvf r on() , there was no data, and so
recvfron() issaidto “block” (that is, sleep there) until some data arrives.

Lots of functions block. accept () blocks. All ther ecv() functions block. The reason
they can do thisis because they're allowed to. When you first create the socket descriptor with
socket (), the kernel setsit to blocking. If you don't want a socket to be blocking, you have to
makeacal tofcntl ():

#i ncl ude <uni std. h>
#i ncl ude <fcntl . h>

sockfd = socket (PF_I NET, SOCK _STREAM O0);
fcntl (sockfd, F_SETFL, O _NONBLOCK);

By setting a socket to non-blocking, you can effectively “poll” the socket for information. If
you try to read from a non-blocking socket and there's no data there, it's not allowed to block—it
will return - 1 and er r no will be set to EWOUL DBLOCK.

Generally speaking, however, thistype of polling isabad idea. If you put your program in a
busy-wait looking for data on the socket, you'll suck up CPU time like it was going out of style. A
more elegant solution for checking to see if there's data waiting to be read comesin the following
sectiononsel ect ().

6.2. sel ect () —Synchronous I/O Multiplexing

This function is somewhat strange, but it's very useful. Take the following situation: you
are aserver and you want to listen for incoming connections as well as keep reading from the
connections you already have.

No problem, you say, just an accept () and acoupleof recv() s. Not so fast, buster! What if
you're blocking on an accept () call? How areyou goingtorecv() dataat the sametime?“Use
non-blocking sockets!” No way! Y ou don't want to be a CPU hog. What, then?

sel ect () givesyou the power to monitor several sockets at the sametime. It'll tell you which
ones are ready for reading, which are ready for writing, and which sockets have raised exceptions, if
you really want to know that.

Without any further ado, I'll offer the synopsisof sel ect () :

|#i ncl ude <sys/time. h> |

29

30

Beej's Guide to Network Programming

#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>

int select(int nunfds, fd_set *readfds, fd_set *witefds,
fd_set *exceptfds, struct tinmeval *timeout);

The function monitors “sets” of file descriptors; in particular r eadf ds, wri t ef ds, and
except f ds. If you want to see if you can read from standard input and some socket descriptor,
sockf d, just add the file descriptors 0 and sockf d to the set r eadf ds. The parameter nunf ds
should be set to the values of the highest file descriptor plus one. In this example, it should be set to
sockf d+1, sinceit is assuredly higher than standard input (0).

When sel ect () returns, r eadf ds will be modified to reflect which of the file descriptors you

selected which is ready for reading. Y ou can test them with the macro FD_| SSET() , below.

Before progressing much further, I'll talk about how to manipulate these sets. Each set is of the

typef d_set . The following macros operate on this type:

FD SET(int fd, fd_set *set); Addfd totheset .

FD CLR(int fd, fd_set *set); Removef d fromtheset .
FD I SSET(int fd, fd_set *set); Returntrueif fd isintheset .
FD ZERQ(fd_set *set); Clear dl entriesfromtheset .

Finally, what isthisweirded out struct timeval ?Well, sometimes you don't want to
wait forever for someone to send you some data. Maybe every 96 seconds you want to print “ Still
Going...” to the terminal even though nothing has happened. This time structure allows you to
specify atimeout period. If thetimeis exceeded and sel ect () still hasn't found any ready file
descriptors, it'll return so you can continue processing.

Thestruct tinmeval hasthefollow fields:

struct timeval {
int tv_sec; /'l seconds
int tv_usec; /'l m croseconds

Just settv_sec to the number of secondsto wait, and sett v_usec to the number of
microseconds to wait. Y es, that's microseconds, not milliseconds. There are 1,000 microseconds
in amillisecond, and 1,000 milliseconds in a second. Thus, there are 1,000,000 microsecondsin
asecond. Why isit “usec”? The “u” is supposed to look like the Greek letter i (Mu) that we use
for “micro”. Also, when the function returns, t i meout might be updated to show the time still
remaining. This depends on what flavor of Unix you're running.

Y ay! We have a microsecond resolution timer! Well, don't count on it. You'll probably have
to wait some part of your standard Unix timeslice no matter how small you set your st r uct
tinmeval .

Other things of interest: If you set thefieldsinyour st ruct tinmeval to0, sel ect () will

timeout immediately, effectively polling all the file descriptorsin your sets. If you set the parameter

ti meout to NULL, it will never timeout, and will wait until the first file descriptor is ready.
Finally, if you don't care about waiting for a certain set, you can just set it to NULL inthecall to
sel ect ().

The following code snippet waits 2.5 seconds for something to appear on standard input:

IR
17.htt p: // beej . us/ gui de/ bgnet / exanpl es/ sel ect. c

http://beej.us/guide/bgnet/examples/select.c

Slightly Advanced Techniques

** select.c -- a select() denp
*/
#i ncl ude <stdi o. h>
#i ncl ude <sys/tine. h>
#i ncl ude <sys/types. h>
#i ncl ude <uni std. h>
#define STDIN O // file descriptor for standard i nput
i nt mai n(voi d)
{
struct tinmeval tv;
fd set readfds;
tv.tv_sec = 2;
tv.tv_usec = 500000;
FD_ZERQ(&r eadf ds) ;
FD_SET(STDI N, &readfds);
/Il don't care about writefds and exceptfds:
sel ect (STDI N+1, &readfds, NULL, NULL, &tv);
if (FD_I SSET(STDI N, &readfds))
printf("A key was pressed!\n");
el se
printf("Tinmed out.\n");
return O;
}

If you're on aline buffered terminal, the key you hit should be RETURN or it will time out
anyway.

Now, some of you might think thisis agreat way to wait for data on a datagram socket—and
you are right: it might be. Some Unices can use select in this manner, and some can't. Y ou should
see what your local man page says on the matter if you want to attempt it.

Some Unices update thetimein your st ruct ti neval to reflect the amount of time still
remaining before atimeout. But others do not. Don't rely on that occurring if you want to be
portable. (Useget t i meof day() if you need to track time elapsed. It's a bummer, | know, but that's
theway itis.)

What happens if a socket in the read set closes the connection? Well, in that case, sel ect ()
returns with that socket descriptor set as “ready to read”. When you actually dor ecv() fromit,
recv() will return 0. That's how you know the client has closed the connection.

One more note of interest about sel ect () : if you have asocket thatis |i st en()ing, you
can check to seeif there is a new connection by putting that socket's file descriptor in ther eadf ds
Set.

And that, my friends, isa quick overview of the aimighty sel ect () function.

But, by popular demand, here is an in-depth example. Unfortunately, the difference between
the dirt-simple example, above, and this one here is significant. But have alook, then read the
description that followsit.

31

32 Beej's Guide to Network Programming

This program* acts like a simple multi-user chat server. Start it running in one window, then
telnet to it (“telnet hosthame 9034”) from multiple other windows. When you type something in
one telnet session, it should appear in all the others.

/*
** selectserver.c -- a cheezy nultiperson chat server
*/

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpal/inet. h>

#defi ne PORT 9034 /Il port we're listening on

i nt mai n(voi d)

{
fd_set master; I/ master file descriptor |ist
fd_set read_fds; // tenp file descriptor list for select()
struct sockaddr_i n nmyaddr; /'l server address
struct sockaddr _in renpteaddr; // client address
int fdmax; /1l maximum fil e descriptor number
int |istener; /1 listening socket descriptor
i nt newfd; /Il newly accept()ed socket descriptor
char buf[256] ; /1 buffer for client data
i nt nbyt es;
int yes=1; /1 for setsockopt() SO REUSEADDR, bel ow
sockl en_t addrl en
int i, j;
FD ZERQ(&mast er) ; /'l clear the master and tenp sets

FD_ZERQ(&r ead_f ds) ;

/'l get the listener

if ((listener = socket (PF_I NET, SOCK_STREAM 0)) == -1) {
perror("socket");
exit(1);

}

/'l lose the pesky "address already in use" error nessage
if (setsockopt(listener, SOL_SOCKET, SO REUSEADDR, &yes, \

sizeof (int)) == -1) {
perror("setsockopt");
exit(1);

}

/1 bind

nyaddr.sin_fam |y = AF_I NET;

nmyaddr . si n_addr.s_addr = | NADDR_ANY;

nmyaddr . si n_port = htons(PORT);

menset (nyaddr. sin_zero, '\0', sizeof nyaddr.sin_zero);

if (bind(listener, (struct sockaddr *)&nmryaddr, sizeof nyaddr) == -1) {
perror ("bind");

18. htt p: // beej . us/ gui de/ bgnet / exanpl es/ sel ect server.c

http://beej.us/guide/bgnet/examples/selectserver.c

Slightly Advanced Techniques

exit(1);

}

Il listen

if (listen(listener, 10) == -1) {
perror("listen");
exit(1);

}

// add the listener to the master set
FD _SET(Ili stener, &master);

/'l keep track of the biggest file descriptor
fdmax = listener; // so far, it's this one

/1l main | oop

for(;;) {
read fds = master; // copy it
if (select(fdmax+1l, & ead_fds, NULL, NULL, NULL) == -1) {
perror("select");
exit(1);
}
/1 run through the existing connections |ooking for data to read
for(i =0; i <= fdmax; i++) {
if (FD_ISSET(i, &ead _fds)) { // we got one!!
if (i ==Ilistener) {

/! handl e new connecti ons
addrl en = si zeof renpteaddr;
if ((newfd = accept(listener, \

(struct sockaddr *)&renoteaddr, &addrlen)) == -1) {
perror("accept");
} else {
FD SET(newfd, &master); // add to master set
if (newfd > fdmax) { /1l keep track of the maxi num

fdmax = newf d;
}
printf("sel ectserver: new connection from% on " \
"socket %\n", \
i net _ntoa(renoteaddr.sin_addr), newfd);
}
} else {
/'l handle data froma client
if ((nbytes = recv(i, buf, sizeof buf, 0)) <= 0) {
/'l got error or connection closed by client
if (nbytes == 0) {
/] connection closed
printf("sel ectserver: socket % hung up\n", i);
} else {
perror("recv");
}

close(i); // bye!
FD CLR(i, &master); // renove from master set
} else {

// we got sone data froma client
for(j =0; j <= fdmax; j++) {

/'l send to everyone!

if (FD_I SSET(j, &master)) {

/'l except the listener and oursel ves

33

34

Beej's Guide to Network Programming

if (j !'=listener & j '=1i) {
if (send(j, buf, nbytes, 0) == -1) {
perror("send");
}

}
}
} // it's SO UGY!

}

return O;

Notice | have two file descriptor setsin the code: mast er andr ead_f ds. Thefirst, mast er,
holds all the socket descriptors that are currently connected, as well as the socket descriptor that is
listening for new connections.

Thereason | havethe nast er setisthat sel ect () actually changes the set you passinto it to
reflect which sockets are ready to read. Since | have to keep track of the connections from one call
of sel ect () tothenext, | must store these safely away somewhere. At the last minute, | copy the
mast er intotheread fds, andthen call sel ect ().

But doesn't this mean that every time | get a new connection, | have to add it to the nast er
set? Yup! And every time a connection closes, | have to remove it from the mast er set? Yes, it
does.

Notice | check to seewhenthel i st ener socket isready to read. When it is, it means| have a
new connection pending, and | accept () it and add it to the mast er set. Similarly, when aclient
connection isready to read, and r ecv() returns0, I know the client has closed the connection, and
| must remove it from the mast er set.

If the client r ecv() returns non-zero, though, | know some data has been received. So | get it,
and then go through the mast er list and send that data to all the rest of the connected clients.

And that, my friends, is aless-than-simple overview of the almighty sel ect () function.

In addition, here is a bonus afterthought: there is another function called pol | () which
behaves much the same way sel ect () does, but with a different system for managing the file
descriptor sets. Check it out!

6.3. Handling Partial send() s

Remember back in the section about send() , above, when | said that send() might not
send all the bytes you asked it to? That is, you want it to send 512 bytes, but it returns 412. What
happened to the remaining 100 bytes?

WEell, they're still in your little buffer waiting to be sent out. Due to circumstances beyond your
control, the kernel decided not to send all the data out in one chunk, and now, my friend, it's up to
you to get the data out there.

Y ou could write afunction like thisto do it, too:

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int sendall (int s, char *buf, int *|en)

{

int total = O; /1l how many bytes we've sent

Slightly Advanced Techniques

int bytesleft = *len; // how many we have left to send
int n;

while(total < *len) {
n = send(s, buf+total, bytesleft, 0);

if (n ==-1) { break; }
total += n;
bytesleft -= n;

}

*len = total; // return nunber actually sent here

return n==-1?-1:0; // return -1 on failure, 0 on success

In this example, s isthe socket you want to send the datato, buf isthe buffer containing the
data, and | en isapointer to ani nt containing the number of bytesin the buffer.

The function returns - 1 on error (and er r no is still set from the call to send() .) Also, the
number of bytes actually sent isreturned in| en. Thiswill be the same number of bytes you asked it
to send, unless there was an error. sendal | () will do it's best, huffing and puffing, to send the data
out, but if there's an error, it gets back to you right away.

For completeness, here's a sample call to the function:

char buf[10] = "Beej!";
int |en;

len = strlen(buf);

if (sendall (s, buf, &en) == -1) {
perror("sendall");
printf("We only sent %l bytes because of the error!\n", len);

What happens on the receiver's end when part of a packet arrives? If the packets are variable
length, how does the receiver know when one packet ends and another begins? Y es, real-world
scenarios are aroyal pain in the donkeys. Y ou probably have to encapsulate (remember that from
the data encapsulation section way back there at the beginning?) Read on for details!

6.4. Serialization—How to Pack Data
It's easy enough to send text data across the network, you're finding, but what happensif you
want to send some “binary” datalikei nt sor f | oat S? It turns out you have afew options.

1. Convert the number into text with afunction likespri nt f (), then send the text. The
receiver will parse the text back into a number using afunction likestrtol ().

2. Just send the data raw, passing a pointer to the datato send() .
3. Encode the number into a portable binary form. The receiver will decodeit.

Sneak preview! Tonight only!

[Curtain raises|

Beg says, “| prefer Method Three, above!”

[THE END]

Actualy, they all have their drawbacks and advantages, but, like | said, in general, | prefer the
third method. First, though, let's talk about some of the drawbacks and advantages to the other two.

35

36

Beej's Guide to Network Programming

The first method, encoding the numbers as text before sending, has the advantage that you can
easily print and read the data that's coming over the wire. Sometimes a human-readabl e protocol
is excellent to use in a non-bandwidth-intensive situation, such as with Internet Relay Chat (IRC)
®. However, it has the disadvantage that it is Slow to convert, and the results almost always take up
more space than the original number!

Method two: passing the raw data. Thisone is quite easy (but dangerous!): just take a pointer
to the data to send, and call send withit.
doubl e d = 3490. 15926535;

send(s, &d, sizeof d, 0); /* DANGER--non-portable! */
Thereceiver getsit like this:
doubl e d;

recv(s, &d, sizeof d, 0); /* DANCER--non-portable! */

Fast, smple—what's not to like? Well, it turns out that not all architectures represent adoubl e
(ori nt) for that matter with the same bit representation or even the same byte ordering! The code
is decidedly non-portable. (Hey—maybe you don't need portability, in which case thisis nice and
fast.)

When packing integer types, we've already seen how the ht ons() -class of functions can help
keep things portable by transforming the numbersinto Network Byte Order, and how that's the
Right Thing to do. Unfortunately, there are no similar functionsfor f | oat types. Isall hope lost?

Fear not! (Were you afraid there for a second? No? Not even alittle bit?) There is something
we can do: we can pack (or “marshal”, or “serialize”, or one of athousand million other names) the
data into a known binary format that the receiver can unpack on the remote side.

What do | mean by “known binary format”? Well, we've already seen the ht ons() example,
right? It changes (or “encodes’, if you want to think of it that way) a number from whatever the
host format isinto Network Byte Order. To reverse (unencode) the number, the receiver calls
nt ohs() .

But didn't | just get finished saying there wasn't any such function for other non-integer types?
Yes. | did. And since there's no standard way in C to do this, it'sabit of a pickle (that a gratuitous
pun there for you Python fans).

The thing to do is to pack the data into a known format and send that over the wire for
decoding. For example, to pack f | oat s, here's something quick and dirty with plenty of room for
improvement:

#i ncl ude <stdint. h>

uint32_t htonf(float f)

{
uint32_t p;
ui nt32_t sign;

if (f <0) { sign =1; f
else { sign = 0; }

1
—h
—

= ((((uint32_t)f)&0x7fff)<<16) | (sign<<3l); // whole part and sign
| (uint32_t)(((f - (int)f) * 65536.0f))&xffff; // fraction

n. w ki pedi a. org/ wi ki /I nt er net _Rel ay_Chat
eej . us/ gui de/ bgnet / exanpl es/ pack. c

N

o

o033
— —+
— —+
TT
~—
~
O o0

http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://beej.us/guide/bgnet/examples/pack.c
http://beej.us/guide/bgnet/examples/pack.c

Slightly Advanced Techniques

return p;
}
float ntohf(uint32_t p)
{
float f = ((p>>16) &0Ox7fff); // whole part
f += (p&0Oxffff) / 65536.0f; // fraction
if (((p>>31)&0x1) == 0x1) { f =-f; } // sign bit set
return f;
}

The above code is sort of a naive implementation that storesaf | oat in a32-bit number. The
high bit (31) is used to store the sign of the number (1" means negative), and the next seven bits
(30-16) are used to store the whole number portion of thef | oat . Finally, the remaining bits (15-0)
are used to store the fractional portion of the number.

Usageisfairly straightforward:

#i ncl ude <stdio. h>

i nt mai n(voi d)

{
float f = 3.1415926, f2
ui nt32_t netf;
netf = htonf(f); // convert to "network" form
f2 = ntohf(netf); // convert back to test
printf("Original: %\n", f); /1 3.141593
printf(" Network: Ox%®8X\n", netf); // 0x0003243F
printf("Unpacked: %\n", f2); /1 3.141586
return O;

}

On the plus side, it's small, simple, and fast. On the minus side, it's not an efficient use of space
and the range is severely restricted—try storing a number greater-than 32767 in there and it won't
be very happy! Y ou can also see in the above example that the last couple decimal places are not
correctly preserved.

What can we do instead? Well, The Standard for storing floating point numbersis known as
|EEE-754*. Most computers use this format internally for doing floating point math, so in those
cases, strictly speaking, conversion wouldn't need to be done. But if you want your source code to
be portable, that's an assumption you can't necessarily make.

Here's some code that encodes floats and doubles into | EEE-754 format . (M ostly—it doesn't
encode NaN or Infinity, but it could be modified to do that.)

#defi ne pack754_32(f) (pack754((f), 32, 8))
#defi ne pack754_64(f) (pack754((f), 64, 11))
#def i ne unpack754_32(i) (unpack754((i), 32, 8))
#defi ne unpack754_64(i) (unpack754((i), 64, 11))

I ong | ong pack754(1 ong double f, unsigned bits, unsigned expbits)
{
| ong doubl e fnorm
int shift;
21.http://en.w ki pedi a.org/wi ki /| EEE_754
22.http://beej.us/ gui de/ bgnet/ exanpl es/i eee754. c

37

http://en.wikipedia.org/wiki/IEEE_754
http://beej.us/guide/bgnet/examples/ieee754.c

38 Beej's Guide to Network Programming

| ong | ong sign, exp, significand;
unsi gned significandbits = bits - expbits - 1; // -1 for sign bit

if (f == 0.0) return 0; // get this special case out of the way

/'l check sign and begin nornalization
if (f <0) { sign =1; fnorm= -f; }
else { sign = 0; fnorm=f; }

/] get the normalized formof f and track the exponent
shift = 0;

while(fnorm>= 2.0) { fnorm/= 2.0; shift++ }
while(fnorm< 1.0) { fnorm*= 2.0; shift--; }

fnorm= fnorm- 1.0

[/l calculate the binary form (non-float) of the significand data
significand = fnorm* ((1lLL<<significandbits) + 0.5f);

/] get the biased exponent
exp = shift + ((1<<(expbits-1)) - 1); // shift + bias

/1 return the final answer
return (sign<<(bits-1)) | (exp<<(bits-expbits-1)) | significand

}
| ong doubl e unpack754(long | ong i, unsigned bits, unsigned expbits)
{
| ong doubl e result;
long long shift;
unsi gned bi as;
unsi gned significandbits = bits - expbits - 1; // -1 for sign bit
if (i == 0) return 0.0
/1 pull the significand
result = (i & (1LL<<significandbits)-1)); // mask
result /= (1lLL<<significandbits); // convert back to fl oat
result += 1.0f; // add the one back on
/] deal with the exponent
bi as = (1l<<(expbits-1)) - 1;
shift = ((i>>significandbits)& (1LL<<expbits)-1)) - bias;
while(shift > 0) { result *= 2.0; shift--; }
while(shift < 0) { result /= 2.0; shift++ }
[l sign it
result *= (i>>(bits-1))&l? -1.0: 1.0;
return result;
}

| put some handy macros up there at the top for packing and unpacking 32-bit (probably a
f | oat) and 64-bit (probably adoubl e) numbers, but the pack754() function could be called
directly and told to encode bi t s-worth of data (expbi t s of which are reserved for the normalized
number's exponent.)

Here's sample usage:

#i ncl ude <stdi o. h>

Slightly Advanced Techniques

#i nclude <stdint.h> // defines uintN_t types
i nt mai n(voi d)
{
float f = 3.1415926, f2
doubl e d = 3.14159265358979323, d2;
uint32_t fi;
uint64_t di;
fi = pack754_32(f);
f2 = unpack754_32(fi);
di = pack754_64(d);
d2 = unpack754_64(di);
printf("float before : % 7f\n", f);
printf("float encoded: O0x%®8X\n", fi);
printf("float after : % 7f\n\n", f2);
printf("double before : %20l f\n", d);
printf("doubl e encoded: 0x%®16l1X\n", di);
printf("double after : %20lf\n", d2);
return O;
}
The above code produces this output:
float before : 3.1415925
fl oat encoded: 0x40490FDA
float after : 3.1415925
doubl e before : 3.14159265358979311600
doubl e encoded: 0x400921FB54442D18
doubl e after : 3.14159265358979311600

Another question you might have is how do you pack st r uct s? Unfortunately for you, the
compiler isfree to put padding all over the placeinast r uct , and that means you can't portably
send the whole thing over the wire in one chunk. (Aren't you getting sick of hearing “can't do
this’, “can't do that”? Sorry! To quote afriend, “Whenever anything goes wrong, | always blame
Microsoft.” This one might not be Microsoft's fault, admittedly, but my friend's statement is
completely true.)

Back to it: the best way to send the st r uct over the wire isto pack each field independently
and then unpack them into the st r uct when they arrive on the other side.

That's alot of work, iswhat you're thinking. Yes, it is. One thing you can do is write a helper
function to help pack the datafor you. It'll be fun! Really!

In the book “The Practice of Programming®” by Kernighan and Pike, they implement
printf()-likefunctionscalled pack() and unpack() that do exactly this. I'd link to them, but
apparently those functions aren't online with the rest of the source from the book.

(The Practice of Programming is an excellent read. Zeus saves a kitten every time |
recommend it.)

At this point, I'm going to drop a pointer to the BSD-licensed Typed Parameter Language C
API* which I've never used, but looks completely respectable. Python and Perl programmers will

23.http://cmbell-Iabs.com cnifcs/tpop/
http://tpl.sourceforge. net/

39

http://cm.bell-labs.com/cm/cs/tpop/
http://tpl.sourceforge.net/
http://tpl.sourceforge.net/

Beej's Guide to Network Programming

want to check out their language's pack() and unpack() functionsfor accomplishing the same
thing. And Java has a big-ol' Serializable interface that can be used in asimilar way.

But if you want to write your own packing utility in C, K&P'strick isto use variable argument
liststo make pri nt f () -like functions to build the packets. Here's aversion | cooked up® on my
own based on that which hopefully will be enough to give you an idea of how such athing can
work.

(This code references the pack754() functions, above. The packi * () functions operate like
the familiar ht ons() family, except they pack into achar array instead of another integer.)

#i ncl ude <ctype. h>
#i ncl ude <stdarg. h>
#i ncl ude <string. h>

/*
** packi 16() -- store a 16-bit int into a char buffer (like htons())
*/
voi d packi 16(unsi gned char *buf, unsigned int i)
{
*buf ++ = i >>8; *buf++ = i;
}
/-k
** packi 32() -- store a 32-bit int into a char buffer (like htonl())
*/
voi d packi 32(unsi gned char *buf, unsigned |long i)
{
*buf ++ = i >>24; *buf ++ = i >>16
*buf ++ = i >>8; *buf++ = i;
}
/*
** uynpacki 16() -- unpack a 16-bit int froma char buffer (like ntohs())
*/
unsi gned i nt unpacki 16(unsi gned char *buf)
{
return (buf[0]<<8) | buf[1];
}
/*

** ynpacki 32() -- unpack a 32-bit int froma char buffer (like ntohl())
*/
unsi gned | ong unpacki 32(unsi gned char *buf)

{
return (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
}
/*
** pack() -- store data dictated by the format string in the buffer
** h - 16-bit | - 32-bit
** ¢ - 8-bit char f - float, 32-bit
** s - string (16-bit length is automatically prepended)
*/
si ze_t pack(unsigned char *buf, char *format, ...)
{

va_list ap;
int h;
25.htt p: // beej . us/ gui de/ bgnet / exanpl es/ pack2. c

http://beej.us/guide/bgnet/examples/pack2.c

Slightly Advanced Techniques 41

int |;

char c;

float f;

char *s;

size t size =0, len

va_start(ap, format);

for(; *format !'= '"\0"; format++) {
switch(*format) {
case 'h': // 16-bit
size += 2;
h = va_arg(ap, int); // pronoted
packi 16(buf, h);

buf += 2;
br eak;

case '|I': // 32-bit
size += 4;

| = va_arg(ap, int);
packi 32(buf, 1);

buf += 4;
br eak;

case 'c': // 8-bit
size += 1;

¢ = va_arg(ap, int); // pronoted
*buf ++ = (c>>0) &Oxf f;
br eak;

case 'f': [/ float
size += 4;
f = va_arg(ap, double); // pronoted
| = pack754_32(f); // convert to | EEE 754
packi 32(buf, 1);
buf += 4;
br eak;

case 's': [/ string
s = va_arg(ap, char*);
len = strlen(s);
size += len + 2
packi 16(buf, 1en);
buf += 2;
mencpy(buf, s, len);
buf += len;
br eak;

}
va_end(ap);

return size;

}

/*

** unpack() -- unpack data dictated by the format string into the buffer
*/

voi d unpack(unsi gned char *buf, char *format, ...)

{

42 Beej's Guide to Network Programming

va_list ap;

short *h

int *I;

int pf;

char *c;

float *f;

char *s;

size_t len, count, maxstrl en=0;

va_start(ap, format);

for(; *format !'= "'\0"; format++) {
switch(*format) {
case 'h': // 16-bit
h = va_arg(ap, short*);
*h = unpacki 16(buf);
buf += 2;
br eak;

case 'I': [/ 32-bit
I = va_arg(ap, int*);
*| = unpacki 32(buf);
buf += 4;
br eak;

case 'c': // 8-bit
c = va_arg(ap, char*);
*c = *huf ++
br eak;

case 'f': [/ float
f = va_arg(ap, float*);
pf = unpacki 32(buf);

buf += 4;
*f = unpack754_32(pf);
br eak;

case 's': [/ string
s = va_arg(ap, char*);
I en = unpacki 16(buf);
buf += 2;
if (maxstrlen > 0 & len > maxstrlen) count = maxstrlen - 1;
el se count = len
mencpy(s, buf, count);
s[count] = "\0O'
buf += len;
br eak;

def aul t:

if (isdigit(*format)) { // track max str len
maxstrlen = maxstrlen * 10 + (*format-'0");
}

}

if (lisdigit(*format)) maxstrlen = 0

}

va_end(ap) ;

Slightly Advanced Techniques

And here is ademonstration program? of the above code that packs some datainto buf and
then unpacks it into variables. Note that when calling unpack() with astring argument (format
specifier “s”), it'swise to put a maximum length count in front of it to prevent a buffer overrun,
e.g. “96s”. Be wary when unpacking data you get over the network—a malicious user might send
badly-constructed packets in an effort to attack your system!

#i ncl ude <stdio. h>

i nt mai n(voi d)
{
unsi gned char buf[1024];
char nmagi c;
short nonkeycount ;
long altitude;
fl oat absurdityfactor;
char *s = "Great unnmitigated Zot! You've found the Runestaff!"
char s2[96];
size_t packetsize, ps2

packet si ze = pack(buf, "chhlsf", "B, 0, 37, -5, s, -3490.6677)
packi 16(buf +1, packetsize); // store packet size in packet for Kkicks

printf("packet is % bytes\n", packetsize);

unpack(buf, "chhl 96sf", &magic, &ps2, &onkeycount, &altitude, s2
&absurdi tyfactor);

printf("'%' % %l %d\"%\" %\n", magic, ps2, nonkeycount, altitude,
s2, absurdityfactor);

return O;

Whether you roll your own code or use someone else's, it's a good ideato have a general set of
data packing routines for the sake of keeping bugs in check, rather than packing each bit by hand
each time.

When packing the data, what's a good format to use? Excellent question. Fortunately, RFC
45067, the External Data Representation Standard, already defines binary formats for a bunch of
different types, like floating point types, integer types, arrays, raw data, etc. | suggest conforming to
that if you're going to roll the data yourself. But you're not obligated to. The Packet Police are not
right outside your door. At least, | don't think they are.

In any case, encoding the data somehow or another before you send it is the right way of doing
things!

6.5. Son of Data Encapsulation

What doesit really mean to encapsulate data, anyway? In the simplest case, it means you'll
stick a header on there with either some identifying information or a packet length, or both.

What should your header look like? Well, it's just some binary data that represents whatever
you feel is necessary to complete your project.

Wow. That's vague.

26. htt p: //beei . us/ gui de/ bgnet / exanpl es/ pack2. c
http://tools.ietf.org/htm /rfc4506

43

http://beej.us/guide/bgnet/examples/pack2.c
http://tools.ietf.org/html/rfc4506
http://tools.ietf.org/html/rfc4506

44

Beej's Guide to Network Programming

Okay. For instance, let's say you have a multi-user chat program that uses SOCK_STREAMS.
When a user types (“says’) something, two pieces of information need to be transmitted to the
server: what was said and who said it.

So far so good? “What's the problem?’ you're asking.

The problem is that the messages can be of varying lengths. One person named “tom” might
say, “Hi”, and another person named “Benjamin” might say, “Hey guyswhat is up?’

Soyou send() al thisstuff to the clientsasit comesin. Y our outgoing data stream looks like
this:

And so on. How does the client know when one message starts and another stops? Y ou could,
if you wanted, make all messages the same length and just call thesendal | () weimplemented,
above. But that wastes bandwidth! We don't want to send() 1024 bytes just so “tom” can say “Hi”.

So we encapsulate the datain atiny header and packet structure. Both the client and server
know how to pack and unpack (sometimes referred to as “marshal” and “ unmarshal™) this data.
Don't look now, but we're starting to define a protocol that describes how a client and server
communicate!

In this case, let's assume the user name is afixed length of 8 characters, padded with' \ 0' .
And then let's assume the data is variable length, up to a maximum of 128 characters. Let's have a
look a sample packet structure that we might use in this situation:

1. I en (1 byte, unsigned)—The total length of the packet, counting the 8-byte user name and
chat data.

2. nane (8 bytes)—The user's name, NUL-padded if necessary.

3. chat dat a (n-bytes)—The dataitself, no more than 128 bytes. The length of the packet
should be calculated as the length of this data plus 8 (the length of the name field, above).

Why did | choose the 8-byte and 128-byte limits for the fields? | pulled them out of the air,
assuming they'd be long enough. Maybe, though, 8 bytes is too restrictive for your needs, and you
can have a 30-byte name field, or whatever. The choiceis up to you.

Using the above packet definition, the first packet would consist of the following information
(in hex and ASCII):

0A 74 6F 6D 00 00 00 00 00 48 69
(length) T o m (paddi ng) H i

And the second is similar:

18 42 65 6E 6A 61 6D 69 6E 48 65 79 20 67 75 79 73 20 77 ...
(length) B e n j a m i n H e vy g u y s W oL,

(Thelength is stored in Network Byte Order, of course. In this case, it's only one byte so it
doesn't matter, but generally speaking you'll want all your binary integers to be stored in Network
Byte Order in your packets.)

When you're sending this data, you should be safe and use a command similar to sendal | (),
above, so you know all the datais sent, even if it takes multiple callsto send() to getit all out.

Likewise, when you're receiving this data, you need to do a bit of extrawork. To be safe, you
should assume that you might receive a partial packet (like maybe wereceive“18 42 65 6E 6A”

Slightly Advanced Techniques

from Benjamin, above, but that's all we get inthiscall torecv()). Weneedtocall recv() over
and over again until the packet is completely received.

But how? Well, we know the number of bytes we need to receive in total for the packet to
be complete, since that number is tacked on the front of the packet. We also know the maximum
packet sizeis 1+8+128, or 137 bytes (because that's how we defined the packet.)

There are actually a couple things you can do here. Since you know every packet starts off
with alength, you can call r ecv() just to get the packet length. Then once you have that, you can
call it again specifying exactly the remaining length of the packet (possibly repeatedly to get all
the data) until you have the complete packet. The advantage of this method is that you only need a
buffer large enough for one packet, while the disadvantage is that you need to call r ecv() at least
twice to get all the data.

Another optionisjust to call recv() and say the amount you're willing to receiveisthe
maximum number of bytesin a packet. Then whatever you get, stick it onto the back of a buffer,
and finally check to seeif the packet is complete. Of course, you might get some of the next packet,
so you'll need to have room for that.

What you can do is declare an array big enough for two packets. Thisisyour work array where
you will reconstruct packets as they arrive.

Every timeyour ecv() data, you'll append it into the work buffer and check to see if the
packet is complete. That is, the number of bytesin the buffer is greater than or equal to the length
specified in the header (+1, because the length in the header doesn't include the byte for the length
itself.) If the number of bytesin the buffer isless than 1, the packet is not complete, obviously. You
have to make a special case for this, though, since the first byte is garbage and you can't rely on it
for the correct packet length.

Once the packet is complete, you can do with it what you will. Use it, and remove it from your
work buffer.

Whew! Are you juggling that in your head yet? Well, here's the second of the one-two punch:
you might have read past the end of one packet and onto the next in asingler ecv() call. That
is, you have awork buffer with one complete packet, and an incompl ete part of the next packet!
Bloody heck. (But thisiswhy you made your work buffer large enough to hold two packets—in
case this happened!)

Since you know the length of the first packet from the header, and you've been keeping track
of the number of bytesin the work buffer, you can subtract and cal culate how many of the bytes
in the work buffer belong to the second (incomplete) packet. When you've handled the first one,
you can clear it out of the work buffer and move the partial second packet down the to front of the
buffer soit'sall ready to go for thenextrecv() .

(Some of you readers will note that actually moving the partial second packet to the beginning
of the work buffer takes time, and the program can be coded to not require this by using a circular
buffer. Unfortunately for the rest of you, adiscussion on circular buffersis beyond the scope of this
article. If you're till curious, grab a data structures book and go from there.)

| never said it was easy. Ok, | did say it was easy. And it is; you just need practice and pretty
soon it'll come to you naturally. By Excalibur | swear it!

6.6. Broadcast Packets—Hello, World!

So far, this guide has talked about sending data from one host to one other host. But it is
possible, | insist, that you can, with the proper authority, send data to multiple hosts at the same
time!

45

46

Beej's Guide to Network Programming

With UDP (only UDP, not TCP) and standard 1Pv4, this is done through a mechanism called
broadcasting. With IPv6 (not appearing in this guide...yet), broadcasting isn't supported, and
you have to resort to the often superior technique of multicasting. But enough of the starry-eyed
future—we're stuck in the 32-bit present.

But wait! You can't just run off and start broadcasting willy-nilly; Y ou have to set the socket
option SO_BROADCAST before you can send a broadcast packet out on the network. It's like a one of
those little plastic covers they put over the missile launch switch! That's just how much power you
hold in your hands!

But serioudly, though, there is a danger to using broadcast packets, and that is: every system
that receives a broadcast packet must undo all the onion-skin layers of data encapsulation until it
finds out what port the data is destined to. And then it hands the data over or discardsit. In either
case, it'salot of work for each machine that receives the broadcast packet, and sinceit isall of them
on the local network, that could be alot of machines doing alot of unnecessary work. When the
game Doom first came out, this was a complaint about its network code.

Yes, | said the local network. There is more than one way to skin acat... wait a minute. Isthere
really more than one way to skin a cat? What kind of expression isthat? Uh, and likewise, thereis
more than one way to send a broadcast packet, but the broadcast packets will usually be restricted to
your local network no matter how you send them.

So now to the meat and potatoes of the whole thing: how do you specify the destination
address for a broadcast message? There are two common ways.

1. Send the datato your broadcast address. Thisis your network number with all one-bits
set for the host portion of the address. For instance, at home my network is 192.168.1.0,
my netmask is 255.255.255.0, so the last byte of the address is my host number (because
the first three bytes, according to the netmask, are the network number). So my broadcast
addressis 192.168.1.255. Under Unix, the ifconfig command will actualy give you
all thisdata. (If you're curious, the bitwise logic to get your broadcast addressis
net wor k_nunber OR (NOT net nask).)

2. Send the datato the “global” broadcast address. Thisis 255.255.255.255, aka
| NADDR_BROADCAST. Many machines will automatically bitwise AND this with your
network number to convert it to a network broadcast address, but some won't. It varies.

So what happens if you try to send data on the broadcast address without first setting the
SO _BROADCAST socket option? Well, let's fire up good old talker and listener and see what
happens.

$ tal ker 192.168.1.2 foo
sent 3 bytes to 192.168.1.2
$ tal ker 192.168. 1. 255 foo
sendt o: Perm ssi on deni ed

$ tal ker 255.255. 255. 255 foo
sendt o: Perm ssi on deni ed

Yes, it's not happy at all...because we didn't set the SO BROADCAST socket option. Do that, and
now you can sendt o() anywhere you want!

In fact, that's the only difference between a UDP application that can broadcast and one that
can't. So let'stake the old talker application and add one section that sets the SO BROADCAST

socket option. WE'l call this program br oadcast er. ¢ *:
28.htt p: // beej . us/ gui de/ bgnet / exanpl es/ br oadcaster. c

http://beej.us/guide/bgnet/examples/broadcaster.c

Slightly Advanced Techniques

/*

** proadcaster.c -- a datagram "client" |ike tal ker.c, except
* % this one can broadcast

=]

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <errno. h>

#i
#i
#i
#i
#i
#i

ncl ude <string. h>

ncl ude <sys/types. h>

ncl ude <sys/ socket. h>
ncl ude <netinet/in.h>
ncl ude <arpal/inet. h>

ncl ude <net db. h>

#def i ne SERVERPORT 4950 // the port users will be connecting to

int main(int argc, char *argv[])

{

i nt sockfd;

struct sockaddr _in their_addr; // connector's address information
struct hostent *he;

i nt nunbyt es;

i nt broadcast = 1;

//char broadcast = '1'; // if that doesn't work, try this

if (argc !'= 3) {
fprintf(stderr, "usage: broadcaster hostnanme nmessage\n");
exit(1);

}

i f ((he=get host bynane(argv[1])) == NULL) { // get the host info
herror (" get host bynane") ;

exit(1);
}
if ((sockfd = socket (AF_I NET, SOCK DGRAM 0)) == -1) {
perror("socket");
exit(1);
}
/1 this call is the difference between this program and tal ker.c
i f (setsockopt(sockfd, SO._SOCKET, SO BROADCAST, &broadcast,
si zeof broadcast) == -1) {
perror("setsockopt (SO _BROADCAST)")
exit(1);
}
their_addr.sin_famly = AF_|I NET; /'l host byte order

their_addr.sin_port = htons(SERVERPORT); // short, network byte order
their_addr.sin_addr = *((struct in_addr *)he->h_addr);
nmenset (t hei r_addr.sin_zero, '\0', sizeof their_addr.sin_zero);

i f ((nunbytes=sendto(sockfd, argv[2], strlen(argv[2]), O,
(struct sockaddr *)&their_addr, sizeof their_addr)) == -1) {
perror("sendto");
exit(1);

47

48

Beej's Guide to Network Programming

printf("sent %l bytes to %\n", nunbytes, inet_ntoa(their_addr.sin_addr));
cl ose(sockfd);

return O;

What's different between thisand a“normal” UDP client/server situation? Nothing! (With the
exception of the client being allowed to send broadcast packets in this case.) As such, go ahead and
run the old UDP listener program in one window, and br oadcaster in another. Y ou should be now
be able to do all those sends that failed, above.

$ tal ker 192.168.1.2 foo

sent 3 bytes to 192.168.1.2

$ tal ker 192.168. 1. 255 foo

sent 3 bytes to 192.168. 1. 255

$ tal ker 255.255. 255. 255 foo
sent 3 bytes to 255.255. 255. 255

And you should see listener responding that it got the packets.

WEell, that's kind of exciting. But now fire up listener on another machine next to you on the
same network so that you have two copies going, one on each machine, and run br oadcaster again
with your broadcast address... Hey! Both listener s get the packet even though you only called
sendt o() once! Cool!

If the listener gets data you send directly to it, but not data on the broadcast address, it could
be that you have afirewall on your local machine that is blocking the packets. (Y es, Pat and Bapper,
thank you for realizing before | did that thisis why my sample code wasn't working. | told you I'd
mention you in the guide, and here you are. So nyah.)

Again, be careful with broadcast packets. Since every machine on the LAN will be forced
to deal with the packet whether it r ecvf r on() sit or not, it can present quite aload to the entire
computing network. They are definitely to be used sparingly and appropriately.

7. Common Questions

Where can | get those header files?

If you don't have them on your system already, you probably don't need them. Check the
manual for your particular platform. If you're building for Windows, you only need to #i ncl ude
<wi nsock. h>.

What do | dowhen bi nd() reports“Addressalready in use”?

You haveto useset sockopt () with the SO REUSEADDR option on the listening socket.
Check out the section on bi nd() and the section on sel ect () for an example.

How do | get alist of open socketson the system?

Use the netstat. Check the man page for full details, but you should get some good output just
typing:
‘$ net st at

The only trick is determining which socket is associated with which program. : -)

How can | view therouting table?
Run the route command (in/ sbi n on most Linuxes) or the command netstat -r.

How can | run theclient and server programsif | only have one computer? Don't | need a
network to write network programs?

Fortunately for you, virtually all machines implement aloopback network “device” that sits
in the kernel and pretends to be a network card. (Thisistheinterface listed as“l 0” in the routing
table)

Pretend you're logged into a machine named “goat ”. Run the client in one window and the
server in another. Or start the server in the background (“server &”) and run the client in the same
window. The upshot of the loopback device isthat you can either client goat or client localhost
(since“l ocal host ” islikely defined in your / et ¢/ host s file) and you'll have the client talking to
the server without a network!

In short, no changes are necessary to any of the code to make it run on a single non-networked
machine! Huzzah!

How can | tell if theremote side has closed connection?
You can tell becauser ecv() will return 0.

How do | implement a“ping” utility? What isI CMP? Wherecan | find out more about raw
sockets and SOCK_RAWP

All your raw sockets questions will be answered in W. Richard Stevens' UNIX Network
Programming books. See the books section of this guide.

49

50

Beej's Guide to Network Programming

How do | build for Windows?

First, delete Windows and install Linux or BSD. } ; -) . No, actually, just see the section on
building for Windows in the introduction.

How do | build for Solarig/SunOS? | keep getting linker errorswhen | try to compile!

The linker errors happen because Sun boxes don't automatically compile in the socket libraries.
See the section on building for Solaris/SunOS in the introduction for an example of how to do this.

Why doessel ect () keep falling out on a signal?

Signals tend to cause blocked system callsto return - 1 with er r no set to EI NTR. When you
set up asignal handler with si gact i on(), you can set the flag SA_ RESTART, which is supposed to
restart the system call after it was interrupted.

Naturally, this doesn't always work.

My favorite solution to thisinvolves agot o statement. Y ou know thisirritates your professors
to no end, so go for it!

sel ect _restart:
if ((err = select(fdmax+1, &readfds, NULL, NULL, NULL)) == -1) {
if (errno == EINTR) {
/! some signal just interrupted us, so restart
goto select _restart;

// handle the real error here:
perror("select");

Sure, you don't need to use got o in this case; you can use other structuresto control it. But |
think the got o statement is actually cleaner.

How can | implement atimeout on acall torecv() ?

Usesel ect () ! It allows you to specify atimeout parameter for socket descriptors that you're
looking to read from. Or, you could wrap the entire functionality in asingle function, like this:

#i ncl ude <uni std. h>

#i ncl ude <sys/time. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int recvtineout(int s, char *buf, int len, int tineout)
{
fd _set fds;
int n;
struct tineval tv;

/'l set up the file descriptor set
FD_ZERQ(&f ds) ;
FD _SET(s, &fds);

/] set up the struct tineval for the tineout
tv.tv_sec = tinmeout;
tv.tv_usec = 0;

// wait until tinmeout or data received
n = select(s+1, &fds, NULL, NULL, &tv);

Common Questions

if (n ==0) return -2; // timeout!
if (n ==-1) return -1; // error

[/l data nust be here, so do a normal recv()
return recv(s, buf, len, 0);

/] Sample call to recvtimeout():
n = recvtineout (s, buf, sizeof buf, 10); // 10 second ti neout

if (n==-1) {

// error occurred

perror("recvtimeout");
}
else if (n ==-2) {

// tinmeout occurred
} else {

/'l got some data in buf
}

Noticethat r ecvt i meout () returns- 2 in case of atimeout. Why not return 0? Well, if you
recall, areturn value of 0 onacall tor ecv() meansthat the remote side closed the connection. So
that return value is already spoken for, and - 1 means “error”, so | chose - 2 as my timeout indicator.

How do | encrypt or compressthe data before sending it through the socket?

One easy way to do encryption isto use SSL (secure sockets layer), but that's beyond the scope
of this guide. (Check out the OpenSSL project® for moreinfo.)

But assuming you want to plug in or implement your own COmpressor or encryption system,
it'sjust amatter of thinking of your data as running through a sequence of steps between both ends.
Each step changes the datain some way.

1. server reads datafrom file (or wherever)
2. server encrypts/compresses data (you add this part)

3. server send() sencrypted data
Now the other way around:

1. clientrecv() sencrypted data
2. client decrypts/decompresses data (you add this part)
3. client writes datato file (or wherever)
If you're going to compress and encrypt, just remember to compressfirst. : -)

Just as long as the client properly undoes what the server does, the data will be fine in the end
no matter how many intermediate steps you add.

29.htt p: // ww. openssl . or g/

51

http://www.openssl.org/

52

Beej's Guide to Network Programming

So all you need to do to use my code is to find the place between where the datais read and the
datais sent (using send()) over the network, and stick some code in there that does the encryption.

What isthis“PF_I NET” | keep seeing? Isit related to AF_| NET?
Yes, yesit is. Seethe section on socket () for details.

How can | write a server that accepts shell commands from a client and executes them?
For ssmplicity, lets say the client connect () s, send() s, and cl ose() sthe connection (that
is, there are no subsequent system calls without the client connecting again.)
The process the client follows isthis:
1. connect () toserver
2. send(“/sbin/ls > /tnp/client.out”)

3. cl ose() the connection
Meanwhile, the server is handling the data and executing it:

1. accept () theconnection from the client
2. recv(str) thecommand string
3. cl ose() the connection

4, systen(str) torunthe command

Beware! Having the server execute what the client saysis like giving remote shell access and
people can do things to your account when they connect to the server. For instance, in the above
example, what if the client sends“rm -rf ~”? It deletes everything in your account, that's what!

So you get wise, and you prevent the client from using any except for a couple utilities that you
know are safe, like the foobar utility:
if (!strncnp(str, "foobar", 6)) {

sprintf(sysstr, "% > /tnp/server.out", str);
syst em(sysstr);

But you're still unsafe, unfortunately: what if the client enters “foobar; rm -rf ~"? The
safest thing to do isto write alittle routine that puts an escape (“\ ") character in front of all
non-alphanumeric characters (including spaces, if appropriate) in the arguments for the command.
Asyou can see, security is a pretty big issue when the server starts executing things the client
sends.

I'm sending a slew of data, but when | recv(), it only receives 536 bytes or 1460 bytes at
atime. But if | run it on my local machine, it receives all the data at the same time. What's
going on?

Y ou're hitting the MTU—the maximum size the physical medium can handle. On the local
machine, you're using the loopback device which can handle 8K or more no problem. But on
Ethernet, which can only handle 1500 bytes with a header, you hit that limit. Over a modem, with
576 MTU (again, with header), you hit the even lower limit.

Common Questions

Y ou have to make sure all the datais being sent, first of all. (Seethesendal | () function
implementation for details.) Once you're sure of that, then you need to call r ecv() inaloop until
all your datais read.

Read the section Son of Data Encapsulation for details on receiving complete packets of data
using multiple callstor ecv() .

I'm on aWindows box and | don't havethef or k() system call or any kind of st ruct
si gacti on. What to do?

If they're anywhere, they'll bein POSIX libraries that may have shipped with your compiler.
Since | don't have a Windows box, | really can't tell you the answer, but | seem to remember that
Microsoft has a POSIX compatibility layer and that'swhere f or k() would be. (And maybe even
si gaction.)

Search the help that came with VC++ for “fork” or “POSIX” and seeiif it gives you any clues.

If that doesn't work at all, ditch thef or k() /si gact i on stuff and replace it with the Win32
equivalent: Cr eat ePr ocess() . | don't know how to use Cr eat ePr ocess() —it takes abazillion
arguments, but it should be covered in the docs that came with VC++.

I'm behind afirewall—how do | let people outside the firewall know my I P address so they
can connect to my machine?

Unfortunately, the purpose of afirewall isto prevent people outside the firewall from
connecting to machines inside the firewall, so allowing them to do so isbasically considered a
breach of security.

Thisisn't to say that all islost. For one thing, you can still often connect () through the
firewall if it's doing some kind of masguerading or NAT or something like that. Just design your
programs so that you're always the one initiating the connection, and you'll be fine.

If that's not satisfactory, you can ask your sysadmins to poke a hole in the firewall so that
people can connect to you. The firewall can forward to you either through it's NAT software, or
through a proxy or something like that.

Be aware that a hole in the firewall is nothing to be taken lightly. Y ou have to make sure you
don't give bad people access to the internal network; if you're a beginner, it'salot harder to make
software secure than you might imagine.

Don't make your sysadmin mad at me. ; -)

How do | write a packet sniffer? How do | put my Ethernet interface into promiscuous mode?

For those not in the know, when a network card isin “promiscuous mode’, it will forward
ALL packetsto the operating system, not just those that were addressed to this particular machine.
(We'retalking Ethernet-layer addresses here, not | P addresses--but since ethernet is lower-layer
than IP, all IP addresses are effectively forwarded as well. See the section Low Level Nonsense and
Network Theory for moreinfo.)

Thisisthe basis for how a packet sniffer works. It puts the interface into promiscuous mode,
then the OS gets every single packet that goes by on the wire. Y ou'll have a socket of some type that
you can read this data from.

Unfortunately, the answer to the question varies depending on the platform, but if you Google
for, for instance, “windows promiscuousioctl” you'll probably get somewhere. There's what |ooks

like a decent writeup in Linux Journa *, as well.
30.http://interactive.linuxjournal.comarticle/ 4659

53

http://interactive.linuxjournal.com/article/4659

54

Beej's Guide to Network Programming

How can | set a custom timeout value for a TCP or UDP socket?

It depends on your system. Y ou might search the net for SO RCVTI MEOand SO_SNDTI MEO
(for use with set sockopt ()) to seeif your system supports such functionality.
The Linux man page suggestsusing al ar n{) or setiti mer () asasubstitute.

How can | tell which portsareavailableto use? Istherealist of “official” port numbers?

Usually thisisn't an issue. If you're writing, say, aweb server, then it's a good ideato use
the well-known port 80 for your software. If you're writing just your own specialized server, then
choose a port at random (but greater than 1023) and giveit atry.

If the port isaready in use, you'll get an “Address already in use” error when you try to
bi nd() . Choose another port. (It'sagood ideato allow the user of your software to specify an
alternate port either with a config file or acommand line switch.)

Thereisalist of official port numbers® maintained by the Internet Assigned Numbers
Authority (IANA). Just because something (over 1023) isin that list doesn't mean you can't use the
port. For instance, |d Software's DOOM uses the same port as “mdqgs’, whatever that is. All that
mattersis that no one else on the same machine is using that port when you want to useit.

31l http://ww. i ana. or g/ assi gnment s/ port - nunber s

http://www.iana.org/assignments/port-numbers

8. Man Pages

In the Unix world, there are alot of manuals. They have little sections that describe individual
functions that you have at your disposal.

Of course, manual would be too much of athing to type. | mean, no one in the Unix world,
including myself, likes to type that much. Indeed | could go on and on at great length about how
much | prefer to be terse but instead | shall be brief and not bore you with long-winded diatribes
about how utterly amazingly brief | prefer to bein virtually al circumstancesin their entirety.

[Applause]

Thank you. What | am getting at is that these pages are called “man pages’ in the Unix world,
and | have included my own personal truncated variant here for your reading enjoyment. The thing
is, many of these functions are way more general purpose than I'm letting on, but I'm only going to
present the parts that are relevant for Internet Sockets Programming.

But wait! That's not all that's wrong with my man pages:

» They areincomplete and only show the basics from the guide.

» There are many more man pages than thisin the real world.

They are different than the ones on your system.
» The header files might be different for certain functions on your system.

» The function parameters might be different for certain functions on your system.

If you want the real information, check your local Unix man pages by typing man whatever,
where “whatever” is something that you're incredibly interested in, such as“accept ”. (I'm sure
Microsoft Visual Studio has something similar in their help section. But “man” is better because it
is one byte more concise than “help”. Unix wins again!)

So, if these are so flawed, why even include them at all in the Guide? Well, there are afew
reasons, but the best are that (a) these versions are geared specifically toward network programming
and are easier to digest than the real ones, and (b) these versions contain examples!

Oh! And speaking of the examples, | don't tend to put in all the error checking because it really
increases the length of the code. But you should absolutely do error checking pretty much any time
you make any of the system calls unless you're totally 100% sure it's not going to fail, and you
should probably do it even then!

55

56

Beej's Guide to Network Programming

8.1. accept ()

Accept an incoming connection on a listening socket

Prototypes

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Description

Once you've gone through the trouble of getting a SOCK_STREAMsocket and setting it up for
incoming connectionswith | i st en() , thenyou call accept () to actualy get yourself a new
socket descriptor to use for subsequent communication with the newly connected client.

The old socket that you are using for listening is still there, and will be used for further
accept () calsasthey comein.

s Thel i st en() ing socket descriptor.
addr Thisisfilled in with the address of the site that's connecting to you.
addrl en Thisisfilled in with thesi zeof () the structure returned in the addr

parameter. You can safely ignoreit if you assume you're getting a st r uct

sockaddr _i n back, which you know you are, because that's the type you
passed in for addr .

accept () will normally block, and you can use sel ect () to peek on the listening socket
descriptor ahead of timeto seeif it's“ready to read”. If so, then there's a new connection waiting
tobeaccept () ed! Yay! Alternatively, you could set the O NONBLOCK flag on the listening socket
using f cnt | (), and then it will never block, choosing instead to return - 1 with er r no set to
EWOUL DBL OCK.

The socket descriptor returned by accept () isabona fide socket descriptor, open and
connected to the remote host. You haveto cl ose() it when you're done withiit.

Return Value
accept () returnsthe newly connected socket descriptor, or - 1 on error, with er r no set
appropriately.

Example

int s, s2;
struct sockaddr _in myaddr, renoteaddr
sockl en_t renoteaddr_| en

nmyaddr.sin_fam |y = AF_I NET,;
nmyaddr . si n_port = htons(3490); // clients connect to this port
nmyaddr . si n_addr.s_addr = | NADDR _ANY; // autosel ect |P address

s = socket (PF_I NET, SOCK_STREAM 0);
bi nd(s, (struct sockaddr*)nyaddr, sizeof nyaddr);

listen(s, 10); // set s up to be a server (listening) socket

Man Pages 57

for(;;) {

s2 = accept(s, & enoteaddr, &renoteaddr_|en);

/1 now you can send() and recv() with the
/'l connected client via socket s2

}

See Also
socket (),listen(),struct sockaddr _in

58

Beej's Guide to Network Programming

8.2. bi nd()

Associate a socket with an 1P address and port number

Prototypes

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

int bind(int sockfd, struct sockaddr *ny_addr, socklen_t addrlen);

Description

When a remote machine wants to connect to your server program, it needs two pieces of
information: the | P address and the port number. The bi nd() call allowsyou to do just that.

First, you call socket () to get a socket descriptor, and then you load up ast r uct
sockaddr _i n with the IP address and port number information, and then you pass both of those
into bi nd() , and the IP address and port are magically (using actual magic) bound to the socket!

If you don't know your IP address, or you know you only have one IP address on the machine,
or you don't care which of the machine's IP addresses is used, you can simply set thes_addr field
inyour st ruct sockaddr _i ntol NADDR_ANY and it will fill in the IP address for you.

Lastly, the addr | en parameter should be set to si zeof my_addr.

Return Value
Returns zero on success, or - 1 on error (and er r no will be set accordingly.)

Example

struct sockaddr _in myaddr;
int s;

nmyaddr.sin_fam |y = AF_I NET,;
myaddr . si n_port = htons(3490);

/'l you can specify an | P address:
i net _aton("63.161.169. 137", &nyaddr.si n_addr.s_addr);

[/l or you can let it automatically sel ect one:
nmyaddr . si n_addr.s_addr = | NADDR_ANY;

s = socket (PF_I NET, SOCK_STREAM 0);
bi nd(s, (struct sockaddr*)nyaddr, sizeof myaddr);

See Also
socket (), struct sockaddr_in,struct in_addr

Man Pages

8.3. connect ()

Connect a socket to a server

Prototypes

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt connect (int sockfd, const struct sockaddr *serv_addr
sockl en_t addrl en);

Description

Once you've built a socket descriptor with thesocket () call, you can connect () that socket
to aremote server using the well-named connect () system call. All you need to do is passit the
socket descriptor and the address of the server you're interested in getting to know better. (Oh, and
the length of the address, which is commonly passed to functions like this.)

If you haven't yet called bi nd() on the socket descriptor, it is automatically bound to your
| P address and arandom local port. Thisis usualy just fine with you, since you really don't care
what your local port is; you only care what the remote port is so you can put it inthe ser v_addr
parameter. You can call bi nd() if you really want your client socket to be on a specific IP address
and port, but thisis pretty rare.

Once the socket isconnect () ed, yourefreetosend() andrecv() dataonit to your heart's
content.

Special note: if you connect () aSOCK_DGRAMUDP socket to a remote host, you can use
send() andrecv() aswell assendt o() andrecvfron(). If youwant.

Return Value
Returns zero on success, or - 1 on error (and er r no will be set accordingly.)

Example

int s;
struct sockaddr _in serv_addr;

/'l pretend the server is at 63.161.169.137 |listening on port 80

nmyaddr.sin_fanm |y = AF_I NET;
myaddr. sin_port = htons(80);
i net _aton("63.161.169. 137", &nyaddr.si n_addr.s_addr);

s = socket (PF_I NET, SOCK_STREAM 0);
connect (s, (struct sockaddr*)nyaddr, sizeof nyaddr);

/1l now we're ready to send() and recv()

See Also
socket (), bi nd()

59

60

Beej's Guide to Network Programming

8.4. cl ose()

Close a socket descriptor

Prototypes
#i ncl ude <uni std. h>

int close(int s);

Description

After you've finished using the socket for whatever demented scheme you have concocted and
you don't want to send() orrecv() or, indeed, do anything else at al with the socket, you can
cl ose() it, andit'll be freed up, never to be used again.

The remote side can tell if this happens one of two ways. One: if the remote side callsrecv(),
it will return 0. Two: if the remote side callssend() , it'll receilve asignal SI GPI PE and send() will
return - 1 and er r no will be set to EPI PE.

Windows users: the function you need to useiscalled cl osesocket (), not cl ose() . If you
try to usecl ose() on asocket descriptor, it's possible Windows will get angry... And you wouldn't
likeit when it'sangry.

Return Value
Returns zero on success, or - 1 on error (and er r no will be set accordingly.)

Example
s = socket (PF_I NET, SOCK_DGRAM 0);

// a whole lotta stuff...*BRRRONNNN *

close(s); // not nmuch to it, really.

See Also
socket (), shut down()

Man Pages

8.5. get host nane()

Returns the name of the system

Prototypes

#i ncl ude <sys/unistd. h>

i nt get host nane(char *nane, size_t |en);

Description

Y our system has aname. They all do. Thisisasdlightly more Unixy thing than the rest of the
networky stuff we've been talking about, but it still hasits uses.

For instance, you can get your host name, and then call get host bynane() to find out your IP
address.

The parameter nane should point to a buffer that will hold the host name, and | en isthe size
of that buffer in bytes. get host nanme() won't overwrite the end of the buffer (it might return an
error, or it might just stop writing), and it will NUL-terminate the string if there's room for it in the
buffer.

Return Value
Returns zero on success, or - 1 on error (and er r no will be set accordingly.)

Example

char host nane[128] ;

get host nane(host nane, si zeof host nane);
printf ("M hostnanme: %\n", hostnane);

See Also
get host bynane()

61

62

Beej's Guide to Network Programming

8.6. get host bynane(), get host byaddr ()

Get an | P address for a hostname, or vice-versa

Prototypes

#i ncl ude <sys/socket. h>
#i ncl ude <netdb. h>

struct hostent *gethost bynanme(const char *nane);
struct hostent *gethostbyaddr(const char *addr, int len, int type);

Description

These functions map back and forth between host names and |1P addresses. After all, you want
an |P address to passto connect (), right? But no one wants to remember an | P address. So you let
your users typein things like “www.yahoo.com” instead of “66.94.230.35".

get host bynane() takesastring like “www.yahoo.com”, and returnsast r uct host ent
which contains tons of information, including the IP address. (Other information is the official host
name, alist of aliases, the address type, the length of the addresses, and the list of addresses—it'sa
general-purpose structure that's pretty easy to use for our specific purposes once you see how.)

get host byaddr () takesastruct in_addr and bringsyou up acorresponding host name
(if thereisone), soit's sort of the reverse of get host bynane() . Asfor parameters, even though
addr isachar *, you actually want to passin apointer toastruct i n_addr.| en should be
si zeof (struct in_addr),andtype should be AF_| NET.

Sowhat isthisstruct host ent that gets returned? It has a number of fields that contain
information about the host in question.

char *h_nane Therea canonical host name.

char **h_ali ases A list of aliasesthat can be accessed with arrays—the last element
iSNULL

int h_addrtype The result's address type, which really should be AF_I NET for our
pUrposes..

int length The length of the addresses in bytes, which is4 for IP (version 4)
addresses.

char **h_addr _|i st A list of 1P addresses for this host. Although thisisachar **, it's
really an array of st ruct i n_addr*sindisguise. Thelast array
element iSNULL.

h_addr A commonly defined aliasfor h_addr _Ii st [0] . If you just want
any old IP address for this host (yeah, they can have more than

one) just usethisfield.

Return Value

Returns a pointer to aresultant st ruct host ent or success, or NULL on error.

Instead of the normal per r or () and all that stuff you'd normally use for error reporting, these
functions have parallel resultsin the variable h_er r no, which can be printed using the functions

Man Pages

herror () orhstrerror (). Thesework just liketheclassicerrno,perror(),andstrerror()

functions you're used to.

Example

int i

struct hostent *he;

struct in_addr **addr_|Ii st;
struct in_addr addr

/'l get the addresses of www. yahoo.com

he = get host byname(" ww. yahoo. cont') ;

if (he == NULL) { // do sone error checking
herror ("gethostbynane"); // herror(), NOT perror()
exit(1);

}

[l print information about this host:
printf("Oficial nane is: %\n", he->h_nane);

printf("Al addresses: ");

addr _list = (struct in_addr **)he->h_addr_|i st;

for(i = 0; addr_list[i] != NULL; i++) {
printf("% ", inet_ntoa(*addr _list[i]));

}

printf("\n");

/1 get the host nanme of 66.94.230. 32:

i net _aton("66.94.230. 32", &addr);
he = get host byaddr (&addr, sizeof addr, AF_I NET);

printf("Host nane: %\n", he->h_nane);

printf("IP address: %\n", inet_ntoa(*(struct in_addr*)he->h_addr));

See Also
get host nane(),errno,perror(),strerror(),struct in_addr

63

64

Beej's Guide to Network Programming

8.7. get peer nane()

Return address info about the remote side of the connection

Prototypes

#i ncl ude <sys/socket. h>

i nt getpeernane(int s, struct sockaddr *addr, socklen_t *len);

Description

Once you have either accept () ed aremote connection, or connect () ed to a server, you now
have what is known as a peer. Y our peer is simply the computer you're connected to, identified by
an |P address and a port. So...

get peer nane() simply returnsast ruct sockaddr _i n filled with information about the
machine you're connected to.

Why isit called a“name”? Well, there are alot of different kinds of sockets, not just Internet
Sockets like we're using in this guide, and so “name” was a hice generic term that covered all cases.
In our case, though, the peer's “name” isit's | P address and port.

Although the function returns the size of the resultant addressin | en, you must preload | en
with the size of addr .

Return Value
Returns zero on success, or - 1 on error (and er r no will be set accordingly.)

Example

int s;
struct sockaddr _in server, addr
socklen_t |en;

/!l make a socket
s = socket (PF_I NET, SOCK_STREAM 0);

/'l connect to a server

server.sin_famly = AF_ I NET

i net _aton("63.161.169. 137", &server.sin_addr);
server.sin_port = htons(80);

connect (s, (struct sockaddr*)&server, sizeof server);

/] get the peer nane

/1l we know we just connected to 63.161.169.137:80, so this should print:
/1 Peer | P address: 63.161.169. 137

/1 Peer port : 80

| en = sizeof addr;
get peernane(s, (struct sockaddr*)&addr, &l en);

printf("Peer |P address: %\n", inet_ntoa(addr.sin_addr));
printf("Peer port : %I\ n", ntohs(addr.sin_port));
See Also

get host nane(), get host bynane(), get host byaddr ()

Man Pages

8.8.errno

Holds the error code for the last system call
Prototypes

#i ncl ude <errno. h>

int errno;

Description

Thisisthe variable that holds error information for alot of system calls. If you'll recall, things
likesocket () andli sten() return-1 on error, and they set the exact value of er r no to let you
know specifically which error occurred.

The header fileer r no. h lists abunch of constant symbolic names for errors, such as
EADDRI NUSE, EPI PE, ECONNREFUSED, etc. Y our local man pages will tell you what codes can be
returned as an error, and you can use these at run time to handle different errorsin different ways.

Or, more commonly, you can call perror () orstrerror () toget ahuman-readable version
of the error.

Return Value
The value of the variable isthe latest error to have transpired, which might be the code for
“success’ if the last action succeeded.

Example

s = socket (PF_I NET, SOCK_STREAM 0);

if (s ==-1) {
perror("socket"); // or use strerror()

}

tryagai n:

if (select(n, &eadfds, NULL, NULL) == -1) {
/1 an error has occurred!!
/[l if we were only interrupted, just restart the select() call:
if (errno == EINTR) goto tryagain; // AAAAl goto!!!
/! otherwise it's a nore serious error:
perror("select");
exit(1);

}

See Also

perror(),strerror()

65

66

Beej's Guide to Network Programming

8.9.fcntl ()

Control socket descriptors

Prototypes

#i ncl ude <sys/unistd. h>
#i ncl ude <sys/fcntl. h>

int fentl(int s, int cnd, long arg);

Description

Thisfunction istypically used to do file locking and other file-oriented stuff, but it also has a
couple socket-related functions that you might see or use from time to time.

Parameter s isthe socket descriptor you wish to operate on, cnd should be set to F_SETFL,
and ar g can be one of the following commands. (Like | said, there¢'smoretofcnt | () thanI'm
letting on here, but I'm trying to stay socket-oriented.)

O_NONBLOCK Set the socket to be non-blocking. See the section on blocking for more
details.
O_ASYNC Set the socket to do asynchronous 1/0. When datais ready to be

recv() 'd on the socket, the signal SI G Owill beraised. Thisisrareto
see, and beyond the scope of the guide. And | think it's only available
on certain systems.

Return Value

Returns zero on success, or - 1 on error (and er r no will be set accordingly.)

Different uses of thef cnt | () actually have different return values, but | haven't covered them
here because they're not socket-related. See your local f cnt | () man page for more information.

Example
int s = socket(PF_I NET, SOCK _STREAM O0);

fentl (s, F_SETFL, O NONBLOCK); // set to non-bl ocking
fentl (s, F_SETFL, O _ASYNC); /'l set to asynchronous |/0O

See Also
Blocking, send()

Man Pages

8.10. ht ons(), htonl (), ntohs(), nt ohl ()

Convert multi-byte integer types from host byte order to network byte order
Prototypes

#i ncl ude <netinet/in. h>

uint32_t htonl (uint32_t hostl ong);
uint16_t htons(uint16_t hostshort);
ui nt 32_t ntohl (ui nt32_t netlong);

uint16_t ntohs(uintl16_t netshort);

Description

Just to make you really unhappy, different computers use different byte orderings internally
for their multibyte integers (i.e. any integer that's larger than achar .) The upshot of thisisthat if
you send() atwo-byteshort i nt from an Intel box to a Mac (before they became Intel boxes,
too, | mean), what one computer thinks is the number 1, the other will think is the number 256, and
vice-versa.

The way to get around this problem is for everyone to put aside their differences and agree
that Motorolaand IBM had it right, and Intel did it the weird way, and so we all convert our byte
orderingsto “big-endian” before sending them out. Since Intel isa“little-endian” machine, it's
far more politically correct to call our preferred byte ordering “Network Byte Order”. So these
functions convert from your native byte order to network byte order and back again.

(This means on Intel these functions swap all the bytes around, and on PowerPC they do
nothing because the bytes are already in Network Byte Order. But you should always use them in
your code anyway, since someone might want to build it on an Intel machine and still have things
work properly.)

Note that the typesinvolved are 32-bit (4 byte, probably i nt) and 16-bit (2 byte, very likely
shor t) numbers. 64-bit machines might have aht onl | () for 64-biti nt s, but I've not seen it.
You'l just have to write your own.

Anyway, the way these functions work is that you first decide if you're converting from host
(your machine's) byte order or from network byte order. If “host”, the the first letter of the function
you'regoing to cal is“h”. Otherwiseit's“n” for “network”. The middle of the function nameis
always “to” because you're converting from one “to” another, and the penultimate letter shows what
you're converting to. The last letter isthe size of the data, “s’ for short, or “I” for long. Thus:

htons() hostt o network short
htonl () hostto network | ong
ntohs() networkt o host short
ntohl () networkto host| ong

Return Value
Each function returns the converted value.

Example

uint32_t sone_l ong = 10;
uint16_t sone_short = 20

67

68 Beej's Guide to Network Programming

ui nt32_t network_byte order;

/'l convert and send

net wor k_byte_order = htonl (sonme_| ong);

send(s, &network_byte order, sizeof(uint32_t), 0);

some_short == ntohs(htons(some_short)); // this expression is true

Man Pages

8.11.inet _ntoa(),inet_aton()

Convert | P addresses from a dots-and-number stringto ast ruct i n_addr and back

Prototypes

#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpa/inet. h>

char *inet_ntoa(struct in_addr in);
int inet_aton(const char *cp, struct in_addr *inp);
i n_addr _t inet_addr(const char *cp);

Description

All of these functions convert fromast ruct i n_addr (part of your st r uct
sockaddr _i n, most likely) to astring in dots-and-numbers format (e.g. “192.168.5.10") and
vice-versa If you have an |P address passed on the command line or something, thisis the easiest
way toget astruct in_addr toconnect () to, or whatever. If you need more power, try some
of the DNS functions like get host byname() or attempt a coup d'Etat in your local country.

Thefunctioni net _nt oa() convertsanetwork addressinastruct in_addr toa
dots-and-numbers format string. The“n” in “ntoa” stands for network, and the “a’ stands for ASCI|
for historical reasons (so it's “Network To ASCII”"—the “toa’ suffix has an analogous friend in the
C library called at oi () which convertsan ASCII string to an integer.)

Thefunctioni net _at on() isthe opposite, converting from a dots-and-numbers string into a
i n_addr _t (whichisthetype of thefields_addr inyour struct in_addr.)

Finally, the functioni net _addr () isan older function that does basically the same thing as
i net _at on() . It'stheoretically deprecated, but you'll seeit alot and the police won't come get you
if you useit.

Return Value

i net _at on() returns non-zero if the addressisavalid one, and it returns zero if the addressis
invalid.

i net _ntoa() returnsthe dots-and-numbers string in a static buffer that is overwritten with
each call to the function.

i net _addr () returnsthe addressasani n_addr _t, or - 1 if there'san error. (That is the same
result asif you tried to convert the string “255.255.255.255”, which isavalid IP address. Thisis
why i net _at on() isbetter.)

Example

struct sockaddr _in antel ope
char *sone_addr;

i net_aton("10.0.0.1", &antelope.sin_addr); // store IP in antel ope

some_addr = inet_ntoa(antelope.sin_addr); // return the IP
printf("%\n", sone_addr); // prints "10.0.0.1"

/[l and this call is the sane as the inet_aton() call, above:
ant el ope. sin_addr.s_addr = inet_addr("10.0.0.1");

69

70 Beej's Guide to Network Programming

See Also
get host bynane(), get host byaddr ()

Man Pages

8.12. 1 i sten()

Tell asocket to listen for incoming connections

Prototypes

#i ncl ude <sys/socket. h>

int listen(int s, int backlog);

Description

Y ou can take your socket descriptor (made with the socket () system call) and tell it to listen
for incoming connections. Thisiswhat differentiates the servers from the clients, guys.

The backl og parameter can mean a couple different things depending on the system you
on, but loosely it is how many pending connections you can have before the kernel starts rejecting
new ones. So as the new connections come in, you should be quick to accept () them so that the
backlog doesn't fill. Try setting it to 10 or so, and if your clients start getting “ Connection refused”
under heavy load, set it higher.

Beforecalling ! i st en(), your server should call bi nd() to attach itself to a specific port
number. That port number (on the server's IP address) will be the one that clients connect to.

Return Value
Returns zero on success, or - 1 on error (and er r no will be set accordingly.)

Example

int s;
struct sockaddr _i n nmyaddr

nmyaddr.sin_fam |y = AF_I NET;
nmyaddr . si n_port = htons(3490); // clients connect to this port
nmyaddr . si n_addr.s_addr = | NADDR_ANY; // autosel ect |P address

s = socket (PF_I NET, SOCK_STREAM 0);
bi nd(s, (struct sockaddr*)nyaddr, sizeof nyaddr);

listen(s, 10); // set s up to be a server (listening) socket

/1 then have an accept() | oop down here sonmewhere

See Also
accept (), bind(),socket ()

71

72

Beej's Guide to Network Programming

8.13.perror(),strerror()

Print an error as a human-readabl e string

Prototypes

#i ncl ude <stdi o. h>
#include <string.h> // for strerror()

voi d perror(const char *s)
char *strerror(int errnum;

Description

Since so many functionsreturn - 1 on error and set the value of the variable er r no to be some
number, it would sure be nice if you could easily print that in aform that made sense to you.

Mercifully, per r or () doesthat. If you want more description to be printed before the error,
you can point the parameter s to it (or you can leave s as NULL and nothing additiona will be
printed.)

In anutshell, this function takes er r no values, like ECONNRESET, and prints them nicely, like
“Connection reset by peer.”

Thefunctionstrerror () isvery smilartoperror (), except it returns a pointer to the error
message string for agiven value (you usually passin the variableer r no.)

Return Value
strerror () returnsapointer to the error message string.

Example

int s;

s = socket (PF_I NET, SOCK_STREAM 0):

if (s ==-1) { // some error has occurred
/1 prints "socket error: " + the error nessage:
perror("socket error");

}

[/ simlarly:

if (listen(s, 10) == -1) {
// this prints "an error: " + the error nessage from errno:
printf("an error: %\n", strerror(errno));

}

See Also

errno

Man Pages

8.14. pol | ()

Test for events on multiple sockets simultaneously

Prototypes

#i ncl ude <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int tinmeout);

Description

Thisfunctionisvery similar to sel ect () inthat they both watch sets of file descriptors for
events, such asincoming dataready tor ecv() , socket ready to send() datato, out-of-band data
ready torecv(), errors, etc.

The basic ideais that you pass an array of nf ds struct pol | f dsinuf ds, dongwitha
timeout in milliseconds (1000 millisecondsin asecond.) Thet i neout can be negative if you want
to wait forever. If no event happens on any of the socket descriptors by the timeout, pol | () will
return.

Each element in the array of st ruct pol | f ds represents one socket descriptor, and contains
the following fields:

struct pollfd {
int fd; /'l the socket descri ptor
short events; /1 bitmap of events we're interested in
short revents; // when poll () returns, bitmap of events that occurred

Before caling pol | (), load f d with the socket descriptor (if you set f d to a negative number,
thisstruct pol | fdisignoredanditsrevent s field is set to zero) and then construct theevent s
field by bitwise-ORing the following macros.

POLLI N Alert me when dataisready tor ecv() on this socket.
POLLOUT Alert mewhen | cansend() datato this socket without blocking.
POLLPRI Alert me when out-of-band dataisready tor ecv() on this socket.

Oncethepol | () cal returns, ther event s field will be constructed as a bitwise-OR of the
above fields, telling you which descriptors actually have had that event occur. Additionally, these
other fields might be present:

POLLERR An error has occurred on this socket.

POLLHUP The remote side of the connection hung up.

POLLNVAL Something was wrong with the socket descriptor f d—maybe it's
uninitialized?

Return Value
Returns the number of elementsin the uf ds array that have had event occur on them; this can
be zero if the timeout occurred. Also returns - 1 on error (and er r no will be set accordingly.)

Example
‘int sl, s2; |

73

74 Beej's Guide to Network Programming

int rv;
char buf 1] 256], buf 2[256] ;
struct pollfd ufds[2];

sl
s2

= socket (PF_I NET, SOCK_STREAM 0);

= socket (PF_I NET, SOCK_STREAM 0);

/] pretend we've connected both to a server at this point
//connect(s1, ...)...

//connect(s2, ...)...

/] set up the array of file descriptors.

/1

/'l in this exanple, we want to know when there's normal or out-of-band
/'l data ready to be recv()'d..

ufds[0].fd = si;
ufds[0] .events = POLLIN | POLLPRI; // check for normal or out-of-band

ufds[1] = s2;
ufds[1] . events = POLLIN; // check for just normal data

// wait for events on the sockets, 3.5 second tineout
rv = poll (ufds, 2, 3500);

if (rv == -1) {

perror("poll™); // error occurred in poll ()
} else if (rv == 0) {

printf("Ti meout occurred! No data after 3.5 seconds.\n");
} else {

/'l check for events on sl:

if (ufds[0].revents & POLLIN) {

recv(sl, bufl, sizeof bufl, 0); // receive normal data

}
if (ufds[0].revents & POLLPRI) {
recv(sl, bufl, sizeof bufl, MSG OOB); // out-of-band data

}

/'l check for events on s2:
if (ufds[1].revents & POLLIN) {
recv(sl, buf2, sizeof buf2, 0);
}
}

See Also
sel ect ()

Man Pages

8.15.recv(),recvfrom)

Receive data on a socket

Prototypes

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

ssize_t recv(int s, void *buf, size t len, int flags);
ssize_t recvfromint s, void *buf, size t len, int flags,
struct sockaddr *from socklen_t *fronlen);

Description

Once you have a socket up and connected, you can read incoming data from the remote side
using therecv() (for TCP SOCK_STREAMsockets) and r ecvf rom() (for UDP SOCK_DGRAM
sockets).

Both functions take the socket descriptor s, a pointer to the buffer buf , the size (in bytes) of
the buffer | en, and aset of f | ags that control how the functions work.

Additionally, ther ecvfron() takesastruct sockaddr*,fromthat will tell you where
the data came from, and will fill inf r om en withthesize of st ruct sockaddr . (You must also
initializef r om en to bethe size of f romor st ruct sockaddr.)

So what wondrous flags can you pass into this function? Here are some of them, but you
should check your local man pages for more information and what is actually supported on your
system. Y ou bitwise-or these together, or just set f | ags to 0 if you want it to be aregular vanilla
recv().

MSG_00B Receive Out of Band data. Thisis how to get data that has been
sent to you with the MSG_00B flag in send() . Asthe receiving
side, you will have had signal SI GURGraised telling you thereis
urgent data. In your handler for that signal, you could call r ecv()
with this M5G_QOOB flag.

MSG_PEEK If youwant tocall recv() “just for pretend”, you can call it with
thisflag. Thiswill tell you what's waiting in the buffer for when
you call recv() “forreal” (i.e. without the MSG_PEEK flag. It's
like a sneak preview into the nextrecv() call.

MSG_WAI TALL Tell recv() tonot return until al the data you specified
inthel en parameter. It will ignore your wishesin extreme
circumstances, however, like if asignal interruptsthe call or if
some error occurs or if the remote side closes the connection, etc.
Don't be mad with it.

When you call recv(), it will block until there is some data to read. If you want to not block,
set the socket to non-blocking or check with sel ect () or pol | () to seeif thereisincoming data
before callingrecv() orrecvfron().

75

Beej's Guide to Network Programming

Return Value

Returns the number of bytes actually received (which might be less than you requested in the
| en parameter), or - 1 on error (and er r no will be set accordingly.)

If the remote side has closed the connection, r ecv() will return 0. Thisisthe normal method
for determining if the remote side has closed the connection. Normality is good, rebel!

Example

int sl, s2;

int byte count, fronlen
struct sockaddr i n addr;
char buf[512];

/! show exanple with a TCP stream socket first
sl = socket (PF_I NET, SOCK_STREAM 0);

/'l info about the server
addr.sin_famly = AF_I NET
addr. si n_port = htons(3490);

i net _aton("10.9.8.7", &addr.sin_addr);

connect (s1, &addr, sizeof addr); // connect to server

// all right! now that we're connected, we can receive sone data
byte _count = recv(sl, buf, sizeof buf, 0);
printf("recv()'d %d bytes of data in buf\n", byte count);

/'l now denp for UDP dat agram sockets:
s2 = socket (PF_I NET, SOCK_DGRAM O0);

from en = sizeof addr

byte count = recvfron(s2, buf, sizeof buf, 0, &addr, &fronlen);
printf("recv()'d %d bytes of data in buf\n", byte count);
printf("fromI|P address %\n", inet_ntoa(addr.sin_addr));

See Also
send(),sendto(),sel ect(),poll (), Blocking

Man Pages

8.16. sel ect ()

Check if sockets descriptors are ready to read/write
Prototypes

#i ncl ude <sys/sel ect. h>

int select(int n, fd_set *readfds, fd_set *witefds, fd_set *exceptfds,
struct tineval *tinmeout);

FD_SET(int fd, fd_set *set);
FD CLR(int fd, fd_set *set);
FD | SSET(int fd, fd_set *set);
FD_ZERQ(fd_set *set);

Description

Thesel ect () function gives you away to simultaneously check multiple sockets to see if
they have datawaiting to ber ecv() d, or if you can send() datato them without blocking, or if
some exception has occurred.

Y ou populate your sets of socket descriptors using the macros, like FD_SET() , above. Once
you have the set, you pass it into the function as one of the following parameters: r eadf ds if you
want to know when any of the socketsinthe set isready torecv() data, wri t ef ds if any of the
socketsisready to send() datato, and/or except f ds if you need to know when an exception
(error) occurs on any of the sockets. Any or al of these parameters can be NULL if you're not
interested in those types of events. After sel ect () returns, the valuesin the sets will be changed to
show which are ready for reading or writing, and which have exceptions.

Thefirst parameter, n is the highest-numbered socket descriptor (they'rejust i nt s, remember?)
plus one.

Lastly, thestruct tineval,tineout, at the end—thisletsyoutell sel ect () how long to
check these setsfor. It'll return after the timeout, or when an event occurs, whichever isfirst. The
struct tineval hastwofields: tv_sec isthe number of seconds, to whichisaddedtv_usec,
the number of microseconds (1,000,000 microseconds in a second.)

The helper macros do the following:

FD_SET(int fd, fd_set *set); Addfdtotheset.

FD CLR(int fd, fd_set *set); Removef d fromtheset .
FD I SSET(int fd, fd_set *set); Returntrueif fd isintheset .
FD ZERQ(f d_set *set); Clear dl entriesfrom theset .

Return Value
Returns the number of descriptorsin the set on success, 0 if the timeout was reached, or - 1 on
error (and er r no will be set accordingly.) Also, the sets are modified to show which sockets are

ready.
Example

int sl1, s2, n;
fd set readfds;
struct tineval tv;

77

78

Beej's Guide to Network Programming

char buf 1[256], buf 2[256] ;

sl
s2

socket (PF_I NET, SOCK_STREAM 0);
socket (PF_I NET, SOCK_STREAM 0);

/Il pretend we've connected both to a server at this point
[/ connect(s1, ...)...
//connect(s2, ...)...

/!l clear the set ahead of tine
FD_ZERQ(&r eadf ds) ;

/! add our descriptors to the set
FD_SET(s1, &readfds);
FD_SET(s2, &readfds);

/1l since we got s2 second, it's the "greater", so we use that for
/1l the n paramin sel ect()
n =s2 + 1;

/1l wait until either socket has data ready to be recv()d (tinmeout 10.5 secs)
tv.tv_sec = 10;

tv.tv_usec = 500000;

rv = select(n, & eadfds, NULL, NULL, &tv);

if (rv == -1) {

perror("select"); // error occurred in select()
} else if (rv == 0) {

printf("Ti meout occurred! No data after 10.5 seconds.\n");
} else {

/1 one or both of the descriptors have data

if (FD_I SSET(sl, &readfds)) {

recv(sl, bufl, sizeof bufl, 0);

}
if (FD_I SSET(s2, &readfds)) {
recv(sl, buf2, sizeof buf2, 0);
}
}

See Also
pol | ()

Man Pages

8.17. set sockopt (), get sockopt ()

Set various options for a socket

Prototypes

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt getsockopt(int s, int level, int optnane, void *optval
sockl en_t *optlen);
int setsockopt(int s, int level, int optnane, const void *optval

sockl en_t optlen);

Description

Sockets are fairly configurable beasts. In fact, they are so configurable, I'm not even going to
cover it al here. It's probably system-dependent anyway. But | will talk about the basics.

Obvioudly, these functions get and set certain options on a socket. On a Linux box, al the
socket information is in the man page for socket in section 7. (Type: “man 7 socket” to get all these
goodies.)

Asfor parameters, s isthe socket you're talking about, level should be set to SOL_ SOCKET.
Then you set the opt nane to the name you're interested in. Again, see your man page for all the
options, but here are some of the most fun ones:

SO _BI NDTODEVI CE Bind this socket to a symbolic device name like et h0 instead
of using bi nd() to bind it to an IP address. Type the command
ifconfig under Unix to see the device names.

SO REUSEADDR Allows other socketsto bi nd() to this port, unlessthereisan
active listening socket bound to the port already. This enables you
to get around those “ Address aready in use” error messages when
you try to restart your server after a crash.

SO _BROADCAST Allows UDP datagram (SOCK_DGRAM sockets to send and
receive packets sent to and from the broadcast address. Does
nothing—NOTHING!!—to TCP stream sockets! Hahaha!

Asfor the parameter opt val , it'susually apointer to ani nt indicating the value in question.
For booleans, zero isfalse, and non-zero is true. And that's an absolute fact, unlessit's different on
your system. If there is no parameter to be passed, opt val can be NULL.

The final parameter, opt | en, isfilled out for you by get sockopt () and you have to specify
it for get sockopt (), whereit will probably besi zeof (int).

War ning: on some systems (notably Sun and Windows), the option can be achar instead of
anint, andisset to, for example, acharacter valueof ' 1' instead of ani nt valueof 1. Again,
check your own man pages for more info with “man setsockopt” and “man 7 socket”!

Return Value
Returns zero on success, or - 1 on error (and er r no will be set accordingly.)

Example

‘int opt val

79

80

Beej's Guide to Network Programming

int optlen;
char *optval 2;

/'l set SO REUSEADDR on a socket to true (1):
optval = 1;
set sockopt (s1, SOL_SOCKET, SO REUSEADDR, &optval, sizeof optval);

I/ bind a socket to a device nanme (mght not work on all systens):
optval 2 = "ethl"; // 4 bytes long, so 4, bel ow
set sockopt (s2, SOL_SOCKET, SO BI NDTCDEVI CE, optval 2, 4);

/] see if the SO BROADCAST flag is set:
get sockopt (s3, SOL_SOCKET, SO BROADCAST, &optval, &optlen);
if (optval '= 0) {

print (" SO _BROADCAST enabl ed on s3!'\n");

}

See Also
fentl ()

Man Pages

8.18. send(), sendt o()

Send data out over a socket

Prototypes

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

ssize_t send(int s, const void *buf, size_t len, int flags);
ssize_t sendto(int s, const void *buf, size t len

int flags, const struct sockaddr *to,

sockl en_t tolen);

Description

These functions send data to a socket. Generally speaking, send() isused for TCP
SOCK_STREAMconnected sockets, and sendt o() isused for UDP SOCK_DGRAMunconnected
datagram sockets. With the unconnected sockets, you must specify the destination of a packet each
time you send one, and that's why the last parameters of sendt o() define where the packet is
going.

With both send() and sendt o() , the parameter s isthe socket, buf isa pointer to the data
you want to send, | en isthe number of bytes you want to send, and f | ags alows you to specify
more information about how the datais to be sent. Set f | ags to zero if you want it to be “normal”
data. Here are some of the commonly used flags, but check your local send() man pages for more
details:

MSG_OOB Send as “out of band” data. TCP supportsthis, and it'saway to
tell the receiving system that this data has a higher priority than
the normal data. The receiver will receive the signal SI GURG and it
can then receive this data without first receiving all the rest of the
normal datain the queue.

MSG_DONTROUTE Don't send this data over arouter, just keep it local.

MSG_DONTWAI T If send() would block because outbound traffic is clogged, have
it return EAGAI N. Thisis like a*enable non-blocking just for this
send.” See the section on blocking for more details.

MSG_NOSI GNAL If you send() toaremote host whichisno longer recv() ing,
you'll typically get the signal SI GPI PE. Adding thisflag prevents

that signal from being raised.

Return Value

Returns the number of bytes actually sent, or - 1 on error (and er r no will be set accordingly.)
Note that the number of bytes actually sent might be less than the number you asked it to send! See
the section on handling partial send() sfor a helper function to get around this.

Also, if the socket has been closed by either side, the process calling send() will get the
signa SI GPI PE. (Unlesssend() was called with the MSG_NOSI GNAL flag.)

Example

‘int spatul a_count = 3490

81

82 Beej's Guide to Network Programming

char *secret_nessage = "The Cheese is in The Toaster";

int stream socket, dgram socket;
struct sockaddr in dest;
int tenp;

/[l first with TCP stream sockets:
stream socket = socket (PF_I NET, SOCK STREAM 0);

/] convert to network byte order

temp = htonl (spatul a_count);

/1 send data nornmally:

send(stream socket, & enp, sizeof tenp, 0);

/'l send secret nessage out of band:
send(stream socket, secret_nessage, strlen(secret_nessage)+1l, MSG QOOB);

/1 now wi th UDP datagram sockets
dgram socket = socket (PF_I NET, SOCK DGRAM 0)

/1 build destination

dest.sin_famly = AF_I NET

i net _aton("10.0.0.1", &dest.sin_addr);
dest.sin_port = htons(2223);

/| send secret nmessage nornally:
sendt o(dgr am socket, secret_nessage, strlen(secret_nessage)+l, 0
(struct sockaddr*)&dest, sizeof dest);

See Also
recv(),recvfrom()

Man Pages

8.19. shut down()

Stop further sends and receives on a socket

Prototypes

#i ncl ude <sys/socket. h>

int shutdown(int s, int how;

Description

That'sit! I've had it! No more send() sare allowed on this socket, but | still wanttor ecv()
dataonit! Or vice-versal How can | do this?

When you cl ose() asocket descriptor, it closes both sides of the socket for reading and
writing, and frees the socket descriptor. If you just want to close one side or the other, you can use
thisshut down() call.

Asfor parameters, s is obviously the socket you want to perform this action on, and what
action that is can be specified with the how parameter. How can be SHUT_RD to prevent further
recv() s, SHUT_WRto prohibit further send() s, or SHUT_RDWR to do both.

Note that shut down() doesn't free up the socket descriptor, so you still have to eventually
cl ose() the socket even if it has been fully shut down.

Thisisararely used system call.

Return Value
Returns zero on success, or - 1 on error (and er r no will be set accordingly.)

Example
int s = socket (PF_I NET, SOCK_STREAM 0);

/1 ...do sone send()s and stuff in here...

/1 and now that we're done, don't allow any nore sends()s:
shut down(s, SHUT_RD);

See Also
cl ose()

83

84

Beej's Guide to Network Programming

8.20. socket ()

Allocate a socket descriptor

Prototypes

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>

i nt socket(int domain, int type, int protocol);

Description

Returns a new socket descriptor that you can use to do sockety things with. Thisis generally
thefirst call in the whopping process of writing a socket program, and you can use the result for
subsequent callstol i st en(), bi nd(), accept (), or avariety of other functions.

donai n domai n describes what kind of socket you're interested in. This can, believe
me, be awide variety of things, but since thisis a socket guide, it's going to
be PF_I NET for you. And, correspondingly, when you load up your st r uct
sockaddr _i n to use with this socket, you're going to set thesi n_fani | y
field to AF_I NET

(Also of interest isPF_I NET6 if you're going to be doing IPv6 stuff. If you
don't know what that is, don't worry about it...yet.)

type Also, thet ype parameter can be a number of things, but you'll probably
be setting it to either SOCK_STREAM(for reliable TCP sockets (send() ,
recv()) or SOCK_DGRAMfor unreliable fast UDP sockets (sendt o(),
recvfron().)

(Another interesting socket type is SOCK_RAWwhich can be used to construct
packets by hand. It's pretty cool.)

pr ot ocol Finally, the pr ot ocol parameter tells which protocol to use with a certain
socket type. Like I've aready said, for instance, SOCK_STREAMuses TCP.
Fortunately for you, when using SOCK_STREAMor SOCK_DGRAM you can
just set the protocol to 0, and it'll use the proper protocol automatically.
Otherwise, you can use get pr ot obynane() to look up the proper protocol
number.

Return Value
The new socket descriptor to be used in subsequent calls, or - 1 on error (and er r no will be set
accordingly.)
Example
int s1, s2;

sl
s2

socket (PF_I NET, SOCK_STREAM 0);
socket (PF_I NET, SOCK_DGRAM 0);

if (sl ==-1) {
perror ("socket");

Man Pages 85

! |

See Also
accept (),bind(),listen()

86

Beej's Guide to Network Programming

8.21.struct sockaddr _in,struct in_addr

Structures for handling internet addresses

Prototypes

#i ncl ude <netinet/in. h>

struct sockaddr_in {

short sin_famly; /1 e.g. AF_INET

unsi gned short sin_port; /1 e.g. htons(3490)

struct in_addr si n_addr; /| see struct in_addr, bel ow
char sin_zero[8]; // zero this if you want to

i

struct in_addr {
unsigned long s_addr; // load with inet_aton()
Ji s

Description

These are the basic structures for all syscalls and functions that deal with internet addresses. In
memory, thest ruct sockaddr _i nisthesamesizeasstruct sockaddr, and you can freely
cast the pointer of one type to the other without any harm, except the possible end of the universe.

Just kidding on that end-of-the-universe thing...if the universe does end when you cast a
struct sockaddr_in*toa struct sockaddr*, | promiseyou it's pure coincidence and you
shouldn't even worry about it.

So, with that in mind, remember that whenever afunction saysit takesast ruct sockaddr *
you can cast your st ruct sockaddr _i n* to that type with ease and safety.

There'saso thissi n_zer o field which some people claim must be set to zero. Other people
don't claim anything about it (the Linux documentation doesn't even mention it at all), and setting it
to zero doesn't seem to be actually necessary. So, if you feel like it, set it to zero using menset () .

Now, that st ruct i n_addr isaweird beast on different systems. Sometimesit's a crazy
uni on with all kinds of #def i nes and other nonsense. But what you should do is only use the
s_addr field in this structure, because many systems only implement that one.

With 1Pv4 (what basically everyonein 2005 still uses), thest ruct s_addr isa4-byte
number that represents one digit in an | P address per byte. (Y ou won't ever see an IP address with a
number in it greater than 255.)

Example

struct sockaddr_i n nmyaddr
int s;

nyaddr.sin_famly = AF_I NET
nmyaddr . si n_port = htons(3490);
i net _aton("10.0.0.1", &nyaddr.sin_addr);

s = socket (PF_I NET, SOCK_STREAM 0);
bi nd(s, (struct sockaddr*)&vyaddr, sizeof nyaddr);

See Also
accept (), bind(),connect(),inet_aton(),inet_ntoa()

9. More References

Y ou've come this far, and now you're screaming for more! Where else can you go to learn
more about all this stuff?

9.1. Books

For old-school actual hold-it-in-your-hand pulp paper books, try some of the following
excellent books. | used to be an affiliate with avery popular internet bookseller, but their new
customer tracking system is incompatible with a print document. As such, | get no more kickbacks.
If you feel compassion for my plight, paypal a donation to beej @ee;j . us. : -)

Unix Network Programming, volumes 1-2 by W. Richard Stevens. Published by Prentice
Hall. ISBNs for volumes 1-2: 0131411551%, 0130810819%.

Inter networking with TCP/IP, volumes I-111 by Douglas E. Comer and David L. Stevens.
Published by Prentice Hall. ISBNs for volumes|, 11, and 111: 0131876716*,
0130319961*, 0130320714 *.

TCP/IP lllustrated, volumes 1-3 by W. Richard Stevens and Gary R. Wright. Published by
Addison Wesley. ISBNsfor volumes 1, 2, and 3 (and a 3-volume set): 0201633469

¥ 020163354X *, 0201634953, (0201776316 ™).

TCP/IP Network Administration by Craig Hunt. Published by O'Reilly & Associates, Inc.
ISBN 0596002971 “.

Advanced Programming in the UNIX Environment by W. Richard Stevens. Published by
Addison Wesley. ISBN 0201433079“.

9.2. Web References
On the web:

BSD Sockets: A Quick And Dirty Primer ® (Unix system programming info, too!)
The Unix Socket FAQ*

Intro to TCP/IP*

TCP/IP FAQ*

The Winsock FAQ*

32.http://beej.us/guide/url/unixnetl
33.http://bee].us/guide/url/unixnet?2
34.http://bee].us/guide/url/intertcpl

35. http://bee].us/guide/url/intertcp2
36.http://bee].us/guide/url/intertcp3
37.http://bee].us/guide/url/tcpil

38. http://beej.us/guide/url/tcpi2
39.http://bee].us/guide/url/tcpi3
40.http://bee].us/guide/url/tcpi123
41.http://bee].us/guide/url/tcpna
42.http://beej.us/guide/url/advunix

43. htt p: /[vww. frost byt es. conlji nf/ papers/sockets/sockets. htm
44.htt p: // ww. devel oper web. net/f orum f or undi 'S_H_I ay. php?f =70
45.http://pclt.cis.yale.edul/pclt/COMW TCPI P.

46.http: //ww. fags. org/faqs/internet/tcp-ip/tcp-ip-faq/partl/
47.http://tangent soft. net/wskf aqg/

87

http://beej.us/guide/url/unixnet1
http://beej.us/guide/url/unixnet2
http://beej.us/guide/url/intertcp1
http://beej.us/guide/url/intertcp2
http://beej.us/guide/url/intertcp3
http://beej.us/guide/url/tcpi1
http://beej.us/guide/url/tcpi2
http://beej.us/guide/url/tcpi3
http://beej.us/guide/url/tcpi123
http://beej.us/guide/url/tcpna
http://beej.us/guide/url/advunix
http://www.frostbytes.com/jimf/papers/sockets/sockets.html
http://www.developerweb.net/forum/forumdisplay.php?f=70
http://pclt.cis.yale.edu/pclt/COMM/TCPIP.HTM
http://www.faqs.org/faqs/internet/tcp-ip/tcp-ip-faq/part1/
http://tangentsoft.net/wskfaq/

88

Beej's Guide to Network Programming

And here are some relevant Wikipedia pages:

Berkeley Sockets®
Internet Protocol (1P)“

Transmission Control Protocol (TCP)*

User Datagram Protocol (UDP)*
Client-Server *

Serialization® (packing and unpacking data)

9.3. RFCs
RFCs>—the red dirt:

RFC 768%*—
RFC 791%*°—
RFC 793°—
RFC 854%*—
RFC 951%*—
RFC 1350°—
RFC 4506*—

The User Datagram Protocol (UDP)

The Internet Protocol (1P)

The Transmission Control Protocol (TCP)

The Telnet Protocol

The Bootstrap Protocol (BOOTP)

The Trivial File Transfer Protocol (TFTP)
External Data Representation Standard (XDR)

The IETF has anice online tool for searching and browsing RFCs®.

jum s g gl pen g s e s e s e e e g o
—~ —~+ ~ ~ ~ ~ ~ ~ ~ ~ ~+ ~ ~ —~

D DODDDD
555535

e e
e e

— —+ —+ —+ —+ —+ — —+
[eNoNoNeoNeoNoNoNo)

— =+ = =+ =+ = — = — — — — — — —+
Q0000000

jehohohohohohohohohohohohohoho]

nunununununununnn-—

3

ki pedi a. or g/ wi ki / Ber kel ey_socket s
ki pedi a. org/ wi ki /| nternet _Pr ot ocol
ki pedi a. or g/ wi ki / Transmi ssi on_Control _Prot ocol
ki pedi a. or g/ wi ki / User _Dat agr am Pr ot ocol
ki pedi a. org/w ki / Qi ent-server
ki pedi a. org/wi ki / Serialization
fc-editor.org/
.ietf.org/htm/rfc768
ietf.org/htm/rfc791
ietf.org/htm /rfc793
ietf.org/htm/rfc854
ietf.org/htm/rfc951
ietf.org/htm /rfcl350
ietf.org/htm /rfc4506
ietf.org/rfc/

http://en.wikipedia.org/wiki/Berkeley_sockets
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Client-server
http://en.wikipedia.org/wiki/Serialization
http://www.rfc-editor.org/
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc854
http://tools.ietf.org/html/rfc951
http://tools.ietf.org/html/rfc1350
http://tools.ietf.org/html/rfc4506
http://tools.ietf.org/rfc/

Index

10.x.x.x 12
192.168.x.x 12

255.255.255.255 46, 69

accept () 16, 16, 56
Addressalready inuse 15, 49
AF_INET 9,13,52, 84
asynchronous1/0 66

Bapper 48
bind() 13,49,58
implicit 15, 16
blahblahblah 8
blocking 29
books 87
BOOTP 88
broadcast 11, 46
byteordering 9, 9, 10, 14, 36, 67

client

datagram 27

streeam 25

client/server 23

close() 19,60

cl osesocket () 2,20, 60
compilers

gcc 1

compression 51

connect () 5, 14, 15, 15, 59
on datagram sockets 19, 28, 59
Connectionrefused 26
CreateProcess() 2,53
CreateThread() 2
CSocket 2

data encapsulation 6, 35

disconnected network see private network.
DNS 20

domain name service see DNS.

donkeys 35

EAGAIN 81

email toBeg 3
encryption 51

EPI PE 60

errno 65,72
Ethernet 7
EWOULDBLOCK 29, 56
Excalibur 45

external datarepresentation standard see XDR.

F SETFL 66

fentl () 29,56, 66
FD CLR() 30,77
FD I SSET() 30,77
FD _SET() 30,77
FD ZERQ() 30,77
file descriptor 5
firewal 12,48, 53
poking holesin 53
footer 6
fork() 2,23,53

get host byaddr () 20, 62
get host byname() 20, 61, 62
get host name() 20, 61

get peernanme() 20,64

get prot obynanme() 84
get sockopt () 79

getti meofday() 31

goat 49

goto 50

header 6

header files 49
herror() 21,22,63
hstrerror() 63
htonl () 10,67, 67
htons() 10, 36, 67, 67
HTTP protocol 5

ICMP 49

|IEEE-754 37

| NADDR_ANY 14

| NADDR_BROADCAST 46

i net _addr () 10,69

inet _aton() 11,69
inet_ntoa() 11,20, 69
Internet Control Message Protocol
Internet protocol seelP.
Internet Relay Chat see IRC.
ioctl() 53

IP 6,714, 19, 20,88
IPaddress 10, 58, 61, 62, 64
IPv6 84

IRC 36

ISO/0sl 7

see ICMP.

layered network model see ISO/OSI.

listen() 13,16,71
backlog 16
with select() 31
l o seeloopback device.
localhost 49
loopback device 49

Beej's Guide to Network Programming

man pages 55 datagram 26
Maximum Transmission Unit see MTU. stream 23
mirroring 3 set sockopt () 15,46, 49, 54, 79
MSG_DONTROUTE 81 shutdown() 19,83
MSG DONTWAI T 81 sigaction() 25,50
MSG_NOSI GNAL 81 SIGO 66
MSG OB 75,81 SI GPIPE 60, 81
MSG _PEEK 75 SIGURG 75,81
MSG WAl TALL 75 SO BI NDTCDEVI CE 79
MTU 52 SO _BROADCAST 46, 79

SO RCVTI MEO 54
NAT 12 SO REUSEADDR 15, 49, 79
netstat 49, 49 SO SNDTI MEO 54
network addresstrandation see NAT. SOCK_DGRAM see socket;datagram.
non-blocking sockets 29, 56, 66, 81 SOCK RAW 84
ntohl () 10,67, 67 SOCK_STREAM see socket;stream.
ntohs() 10, 67,67 socket 5

datagram 5, 6, 6, 13, 18, 75, 79, 81, 84

O _ASYNC see asynchronous |/O. rav 5
O _NONBLOCK see non-blocking sockets. stream 5, 5, 13, 56, 75, 81, 84
OpenSSL 51 types 5,5

out-of-band data 75, 81 socket descriptor 5,9

socket () 5,13,84
SOL_SOCKET 79
Solaris 1,79

SSL 51
strerror() 65,72

packet sniffer 53

Pat 48

perror() 65,72

PF_INET 13,52, 84

;I;_QINE426 84 struct hostent 21,62

pol I () 34,73 struct in_addr 9,11,86
port 19 58,64 struct pollfd 73

ports 1é' 1’5 struct sockaddr 9,19, 75, 86

struct sockaddr_in 9,56, 86

private network 12 struct tinmeval 30,77

promiscuous mode 53

SunOS 1,79
raw sockets 5, 49 TCP 6, 84,88
read() 5 gcc 5,88
timeout, setting 54
recvfron() 19,75 !
feovt i meout () 51 trandations 3
u transmission control protocol see TCP.
references 87 TRON 15
web-based 87
RFCs 88 UDP 6,7, 46, 84, 88
route 49 user datagram protocol see UDP.
SA_RESTART 50 Windows 1, 20, 49, 60, 79
Secure SocketsLayer seeSSL. Winsock 2. 20
security 52 Winsock FAQ 2
select() 2,29, 29,49, 50,77 wite() 5
with listen() 31 WBAC eanup() 2
send() 5,5,7,18,81 WBASt artup() 2
sendal | () 34,44
sendto() 7,81 XDR 43,88

serialization 35
server zombie process 25

	Contents
	Intro
	Audience
	Platform and Compiler
	Official Homepage
	Note for Solaris/SunOS Programmers
	Note for Windows Programmers
	Email Policy
	Mirroring
	Note for Translators
	Copyright and Distribution

	What is a socket?
	Two Types of Internet Sockets
	Low level Nonsense and Network Theory

	structs and Data Handling
	Convert the Natives!
	IP Addresses and How to Deal With Them
	Private (Or Disconnected) Networks

	System Calls or Bust
	socket()—Get the File Descriptor!
	bind()—What port am I on?
	connect()—Hey, you!
	listen()—Will somebody please call me?
	accept()—"Thank you for calling port 3490."
	send() and recv()—Talk to me, baby!
	sendto() and recvfrom()—Talk to me, DGRAM-style
	close() and shutdown()—Get outta my face!
	getpeername()—Who are you?
	gethostname()—Who am I?
	DNS—You say "whitehouse.gov", I say "63.161.169.137"

	Client-Server Background
	A Simple Stream Server
	A Simple Stream Client
	Datagram Sockets

	Slightly Advanced Techniques
	Blocking
	select()—Synchronous I/O Multiplexing
	Handling Partial send()s
	Serialization—How to Pack Data
	Son of Data Encapsulation
	Broadcast Packets—Hello, World!

	Common Questions
	Man Pages
	accept()
	bind()
	connect()
	close()
	gethostname()
	gethostbyname(), gethostbyaddr()
	getpeername()
	errno
	fcntl()
	htons(), htonl(), ntohs(), ntohl()
	inet_ntoa(), inet_aton()
	listen()
	perror(), strerror()
	poll()
	recv(), recvfrom()
	select()
	setsockopt(), getsockopt()
	send(), sendto()
	shutdown()
	socket()
	struct sockaddr_in, struct in_addr

	More References
	Books
	Web References
	RFCs

	Index

