
Beej's Guide to Network Programming
Using Internet Sockets

Brian “Beej Jorgensen” Hall
beej@beej.us

Version 2.4.5
August 5, 2007

Copyright © 2007 Brian “Beej Jorgensen” Hall

iii

Contents

1. Intro... 1
1.1. Audience 1
1.2. Platform and Compiler 1
1.3. Official Homepage 1
1.4. Note for Solaris/SunOS Programmers 1
1.5. Note for Windows Programmers 1
1.6. Email Policy 3
1.7. Mirroring 3
1.8. Note for Translators 3
1.9. Copyright and Distribution 3

2. What is a socket?...5
2.1. Two Types of Internet Sockets 5
2.2. Low level Nonsense and Network Theory 6

3. structs and Data Handling...9
3.1. Convert the Natives! 10
3.2. IP Addresses and How to Deal With Them 10

4. System Calls or Bust... 13
4.1. socket()—Get the File Descriptor! 13
4.2. bind()—What port am I on? 13
4.3. connect()—Hey, you! 15
4.4. listen()—Will somebody please call me? 16
4.5. accept()—“Thank you for calling port 3490.” 16
4.6. send() and recv()—Talk to me, baby! 18
4.7. sendto() and recvfrom()—Talk to me, DGRAM-style 18
4.8. close() and shutdown()—Get outta my face! 19
4.9. getpeername()—Who are you? 20
4.10. gethostname()—Who am I? 20
4.11. DNS—You say “whitehouse.gov”, I say “63.161.169.137” 20

5. Client-Server Background.. 23
5.1. A Simple Stream Server 23
5.2. A Simple Stream Client 25
5.3. Datagram Sockets 26

6. Slightly Advanced Techniques..29
6.1. Blocking 29
6.2. select()—Synchronous I/O Multiplexing 29
6.3. Handling Partial send()s 34
6.4. Serialization—How to Pack Data 35
6.5. Son of Data Encapsulation 43
6.6. Broadcast Packets—Hello, World! 45

Contents

iv

7. Common Questions..49

8. Man Pages...55
8.1. accept() 56
8.2. bind() 58
8.3. connect() 59
8.4. close() 60
8.5. gethostname() 61
8.6. gethostbyname(), gethostbyaddr() 62
8.7. getpeername() 64
8.8. errno 65
8.9. fcntl() 66
8.10. htons(), htonl(), ntohs(), ntohl() 67
8.11. inet_ntoa(), inet_aton() 69
8.12. listen() 71
8.13. perror(), strerror() 72
8.14. poll() 73
8.15. recv(), recvfrom() 75
8.16. select() 77
8.17. setsockopt(), getsockopt() 79
8.18. send(), sendto() 81
8.19. shutdown() 83
8.20. socket() 84
8.21. struct sockaddr_in, struct in_addr 86

9. More References...87
9.1. Books 87
9.2. Web References 87
9.3. RFCs 88

Index 89

1

1. Intro

Hey! Socket programming got you down? Is this stuff just a little too difficult to figure out
from the man pages? You want to do cool Internet programming, but you don't have time to wade
through a gob of structs trying to figure out if you have to call bind() before you connect(),
etc., etc.

Well, guess what! I've already done this nasty business, and I'm dying to share the information
with everyone! You've come to the right place. This document should give the average competent C
programmer the edge s/he needs to get a grip on this networking noise.

1.1. Audience
This document has been written as a tutorial, not a reference. It is probably at its best when

read by individuals who are just starting out with socket programming and are looking for a
foothold. It is certainly not the complete guide to sockets programming, by any means.

Hopefully, though, it'll be just enough for those man pages to start making sense... :-)

1.2. Platform and Compiler
The code contained within this document was compiled on a Linux PC using Gnu's gcc

compiler. It should, however, build on just about any platform that uses gcc. Naturally, this doesn't
apply if you're programming for Windows—see the section on Windows programming, below.

1.3. Official Homepage
This official location of this document is http://beej.us/guide/bgnet/.

1.4. Note for Solaris/SunOS Programmers
When compiling for Solaris or SunOS, you need to specify some extra command-line switches

for linking in the proper libraries. In order to do this, simply add “-lnsl -lsocket -lresolv”
to the end of the compile command, like so:
$ cc -o server server.c -lnsl -lsocket -lresolv

If you still get errors, you could try further adding a “-lxnet” to the end of that command
line. I don't know what that does, exactly, but some people seem to need it.

Another place that you might find problems is in the call to setsockopt(). The prototype
differs from that on my Linux box, so instead of:
int yes=1;

enter this:
char yes='1';

As I don't have a Sun box, I haven't tested any of the above information—it's just what people
have told me through email.

1.5. Note for Windows Programmers
At this point in the guide, historically, I've done a bit of bagging on Windows, simply due to

the fact that I don't like it very much. But I should really be fair and tell you that Windows has a
huge install base and is obviously a perfectly fine operating system.

They say absence makes the heart grow fonder, and in this case, I believe it to be true. (Or
maybe it's age.) But what I can say is that after a decade-plus of not using Microsoft OSes for my

http://beej.us/guide/bgnet/

2 Beej's Guide to Network Programming

personal work, I'm much happier! As such, I can sit back and safely say, “Sure, feel free to use
Windows!” ...Ok yes, it does make me grit my teeth to say that.

So I still encourage you to try Linux 1, BSD 2, or some flavor of Unix, instead.
But people like what they like, and you Windows folk will be pleased to know that this

information is generally applicable to you guys, with a few minor changes, if any.
One cool thing you can do is install Cygwin 3, which is a collection of Unix tools for Windows.

I've heard on the grapevine that doing so allows all these programs to compile unmodified.
But some of you might want to do things the Pure Windows Way. That's very gutsy of you,

and this is what you have to do: run out and get Unix immediately! No, no—I'm kidding. I'm
supposed to be Windows-friendly(er) these days...

This is what you'll have to do (unless you install Cygwin!): first, ignore pretty much all of the
system header files I mention in here. All you need to include is:
#include <winsock.h>

Wait! You also have to make a call to WSAStartup() before doing anything else with the
sockets library. The code to do that looks something like this:
#include <winsock.h>

{
 WSADATA wsaData; // if this doesn't work
 //WSAData wsaData; // then try this instead

 if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0) {
 fprintf(stderr, "WSAStartup failed.\n");
 exit(1);
 }

You also have to tell your compiler to link in the Winsock library, usually called
wsock32.lib or winsock32.lib or some-such. Under VC++, this can be done through
the Project menu, under Settings.... Click the Link tab, and look for the box titled
“Object/library modules”. Add “wsock32.lib” to that list.

Or so I hear.
Finally, you need to call WSACleanup() when you're all through with the sockets library. See

your online help for details.
Once you do that, the rest of the examples in this tutorial should generally apply, with

a few exceptions. For one thing, you can't use close() to close a socket—you need to use
closesocket(), instead. Also, select() only works with socket descriptors, not file descriptors
(like 0 for stdin).

There is also a socket class that you can use, CSocket. Check your compilers help pages for
more information.

To get more information about Winsock, read the Winsock FAQ 4 and go from there.
Finally, I hear that Windows has no fork() system call which is, unfortunately, used in some

of my examples. Maybe you have to link in a POSIX library or something to get it to work, or
you can use CreateProcess() instead. fork() takes no arguments, and CreateProcess()
takes about 48 billion arguments. If you're not up to that, the CreateThread() is a little easier to

1. http://www.linux.com/
2. http://www.bsd.org/
3. http://www.cygwin.com/
4. http://tangentsoft.net/wskfaq/

http://www.linux.com/
http://www.bsd.org/
http://www.cygwin.com/
http://www.cygwin.com/
http://tangentsoft.net/wskfaq/

Intro 3

digest...unfortunately a discussion about multithreading is beyond the scope of this document. I can
only talk about so much, you know!

1.6. Email Policy
I'm generally available to help out with email questions so feel free to write in, but I can't

guarantee a response. I lead a pretty busy life and there are times when I just can't answer a question
you have. When that's the case, I usually just delete the message. It's nothing personal; I just won't
ever have the time to give the detailed answer you require.

As a rule, the more complex the question, the less likely I am to respond. If you can narrow
down your question before mailing it and be sure to include any pertinent information (like
platform, compiler, error messages you're getting, and anything else you think might help me
troubleshoot), you're much more likely to get a response. For more pointers, read ESR's document,
How To Ask Questions The Smart Way 5.

If you don't get a response, hack on it some more, try to find the answer, and if it's still elusive,
then write me again with the information you've found and hopefully it will be enough for me to
help out.

Now that I've badgered you about how to write and not write me, I'd just like to let you know
that I fully appreciate all the praise the guide has received over the years. It's a real morale boost,
and it gladdens me to hear that it is being used for good! :-) Thank you!

1.7. Mirroring
You are more than welcome to mirror this site, whether publicly or privately. If you publicly

mirror the site and want me to link to it from the main page, drop me a line at beej@beej.us.

1.8. Note for Translators
If you want to translate the guide into another language, write me at beej@beej.us and I'll

link to your translation from the main page. Feel free to add your name and contact info to the
translation.

Please note the license restrictions in the Copyright and Distribution section, below.
Sorry, but due to space constraints, I cannot host the translations myself.

1.9. Copyright and Distribution
Beej's Guide to Network Programming is Copyright © 2007 Brian “Beej Jorgensen” Hall.
With specific exceptions for source code and translations, below, this work is licensed under

the Creative Commons Attribution- Noncommercial- No Derivative Works 3.0 License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105,
USA.

One specific exception to the “No Derivative Works” portion of the license is as follows: this
guide may be freely translated into any language, provided the translation is accurate, and the guide
is reprinted in its entirety. The same license restrictions apply to the translation as to the original
guide. The translation may also include the name and contact information for the translator.

The C source code presented in this document is hereby granted to the public domain, and is
completely free of any license restriction.

Educators are freely encouraged to recommend or supply copies of this guide to their students.
Contact beej@beej.us for more information.

5. http://www.catb.org/~esr/faqs/smart-questions.html

http://www.catb.org/~esr/faqs/smart-questions.html
http://creativecommons.org/licenses/by-nc-nd/3.0/

5

2. What is a socket?

You hear talk of “sockets” all the time, and perhaps you are wondering just what they are
exactly. Well, they're this: a way to speak to other programs using standard Unix file descriptors.

What?
Ok—you may have heard some Unix hacker state, “Jeez, everything in Unix is a file!” What

that person may have been talking about is the fact that when Unix programs do any sort of I/O,
they do it by reading or writing to a file descriptor. A file descriptor is simply an integer associated
with an open file. But (and here's the catch), that file can be a network connection, a FIFO, a pipe,
a terminal, a real on-the-disk file, or just about anything else. Everything in Unix is a file! So when
you want to communicate with another program over the Internet you're gonna do it through a file
descriptor, you'd better believe it.

“Where do I get this file descriptor for network communication, Mr. Smarty-Pants?” is
probably the last question on your mind right now, but I'm going to answer it anyway: You make a
call to the socket() system routine. It returns the socket descriptor, and you communicate through
it using the specialized send() and recv() (man send, man recv) socket calls.

“But, hey!” you might be exclaiming right about now. “If it's a file descriptor, why in the name
of Neptune can't I just use the normal read() and write() calls to communicate through the
socket?” The short answer is, “You can!” The longer answer is, “You can, but send() and recv()
offer much greater control over your data transmission.”

What next? How about this: there are all kinds of sockets. There are DARPA Internet
addresses (Internet Sockets), path names on a local node (Unix Sockets), CCITT X.25 addresses
(X.25 Sockets that you can safely ignore), and probably many others depending on which Unix
flavor you run. This document deals only with the first: Internet Sockets.

2.1. Two Types of Internet Sockets
What's this? There are two types of Internet sockets? Yes. Well, no. I'm lying. There are more,

but I didn't want to scare you. I'm only going to talk about two types here. Except for this sentence,
where I'm going to tell you that “Raw Sockets” are also very powerful and you should look them
up.

All right, already. What are the two types? One is “Stream Sockets”; the other is “Datagram
Sockets”, which may hereafter be referred to as “SOCK_STREAM” and “SOCK_DGRAM”, respectively.
Datagram sockets are sometimes called “connectionless sockets”. (Though they can be
connect()'d if you really want. See connect(), below.)

Stream sockets are reliable two-way connected communication streams. If you output two
items into the socket in the order “1, 2”, they will arrive in the order “1, 2” at the opposite end. They
will also be error-free. I'm so certain, in fact, they will be error-free, that I'm just going to put my
fingers in my ears and chant la la la la if anyone tries to claim otherwise.

What uses stream sockets? Well, you may have heard of the telnet application, yes? It uses
stream sockets. All the characters you type need to arrive in the same order you type them, right?
Also, web browsers use the HTTP protocol which uses stream sockets to get pages. Indeed, if you
telnet to a web site on port 80, and type “GET / HTTP/1.0” and hit RETURN twice, it'll dump the
HTML back at you!

6 Beej's Guide to Network Programming

How do stream sockets achieve this high level of data transmission quality? They use a
protocol called “The Transmission Control Protocol”, otherwise known as “TCP” (see RFC 793 6

for extremely detailed info on TCP.) TCP makes sure your data arrives sequentially and error-free.
You may have heard “TCP” before as the better half of “TCP/IP” where “IP” stands for “Internet
Protocol” (see RFC 791 7.) IP deals primarily with Internet routing and is not generally responsible
for data integrity.

Cool. What about Datagram sockets? Why are they called connectionless? What is the deal,
here, anyway? Why are they unreliable? Well, here are some facts: if you send a datagram, it may
arrive. It may arrive out of order. If it arrives, the data within the packet will be error-free.

Datagram sockets also use IP for routing, but they don't use TCP; they use the “User Datagram
Protocol”, or “UDP” (see RFC 768 8.)

Why are they connectionless? Well, basically, it's because you don't have to maintain an open
connection as you do with stream sockets. You just build a packet, slap an IP header on it with
destination information, and send it out. No connection needed. They are generally used either
when a TCP stack is unavailable or when a few dropped packets here and there don't mean the
end of the Universe. Sample applications: tftp, bootp, multiplayer games, streaming audio, video
conferencing, etc.

“Wait a minute! tftp and bootp are used to transfer binary applications from one host to
another! Data can't be lost if you expect the application to work when it arrives! What kind of dark
magic is this?”

Well, my human friend, tftp and similar programs have their own protocol on top of UDP. For
example, the tftp protocol says that for each packet that gets sent, the recipient has to send back a
packet that says, “I got it!” (an “ACK” packet.) If the sender of the original packet gets no reply in,
say, five seconds, he'll re-transmit the packet until he finally gets an ACK. This acknowledgment
procedure is very important when implementing reliable SOCK_DGRAM applications.

For unreliable applications like games, you just ignore the dropped packets, or perhaps try
to cleverly compensate for them. (Quake players will know the manifestation this effect by the
technical term: #%$@* lag.)

2.2. Low level Nonsense and Network Theory
Since I just mentioned layering of protocols, it's time to talk about how networks really work,

and to show some examples of how SOCK_DGRAM packets are built. Practically, you can probably
skip this section. It's good background, however.

Data Encapsulation.

Hey, kids, it's time to learn about Data Encapsulation! This is very very important. It's so
important that you might just learn about it if you take the networks course here at Chico State ;-).
Basically, it says this: a packet is born, the packet is wrapped (“encapsulated”) in a header (and
rarely a footer) by the first protocol (say, the TFTP protocol), then the whole thing (TFTP header

6. http://tools.ietf.org/html/rfc793
7. http://tools.ietf.org/html/rfc791
8. http://tools.ietf.org/html/rfc768

http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc768

What is a socket? 7

included) is encapsulated again by the next protocol (say, UDP), then again by the next (IP), then
again by the final protocol on the hardware (physical) layer (say, Ethernet).

When another computer receives the packet, the hardware strips the Ethernet header, the kernel
strips the IP and UDP headers, the TFTP program strips the TFTP header, and it finally has the data.

Now I can finally talk about the infamous Layered Network Model (aka “ISO/OSI”). This
Network Model describes a system of network functionality that has many advantages over other
models. For instance, you can write sockets programs that are exactly the same without caring how
the data is physically transmitted (serial, thin Ethernet, AUI, whatever) because programs on lower
levels deal with it for you. The actual network hardware and topology is transparent to the socket
programmer.

Without any further ado, I'll present the layers of the full-blown model. Remember this for
network class exams:

• Application

• Presentation

• Session

• Transport

• Network

• Data Link

• Physical

The Physical Layer is the hardware (serial, Ethernet, etc.). The Application Layer is just about
as far from the physical layer as you can imagine—it's the place where users interact with the
network.

Now, this model is so general you could probably use it as an automobile repair guide if you
really wanted to. A layered model more consistent with Unix might be:

• Application Layer (telnet, ftp, etc.)

• Host-to-Host Transport Layer (TCP, UDP)

• Internet Layer (IP and routing)

• Network Access Layer (Ethernet, ATM, or whatever)

At this point in time, you can probably see how these layers correspond to the encapsulation of
the original data.

See how much work there is in building a simple packet? Jeez! And you have to type in the
packet headers yourself using “cat”! Just kidding. All you have to do for stream sockets is send()
the data out. All you have to do for datagram sockets is encapsulate the packet in the method of
your choosing and sendto() it out. The kernel builds the Transport Layer and Internet Layer on
for you and the hardware does the Network Access Layer. Ah, modern technology.

So ends our brief foray into network theory. Oh yes, I forgot to tell you everything I wanted
to say about routing: nothing! That's right, I'm not going to talk about it at all. The router strips the

8 Beej's Guide to Network Programming

packet to the IP header, consults its routing table, blah blah blah. Check out the IP RFC 9 if you
really really care. If you never learn about it, well, you'll live.

9. http://tools.ietf.org/html/rfc791

http://tools.ietf.org/html/rfc791

9

3. structs and Data Handling

Well, we're finally here. It's time to talk about programming. In this section, I'll cover various
data types used by the sockets interface, since some of them are a real bear to figure out.

First the easy one: a socket descriptor. A socket descriptor is the following type:
int

Just a regular int.
Things get weird from here, so just read through and bear with me. Know this: there are two

byte orderings: most significant byte (sometimes called an “octet”) first, or least significant byte
first. The former is called “Network Byte Order”. Some machines store their numbers internally in
Network Byte Order, some don't. When I say something has to be in Network Byte Order, you have
to call a function (such as htons()) to change it from “Host Byte Order”. If I don't say “Network
Byte Order”, then you must leave the value in Host Byte Order.

(For the curious, “Network Byte Order” is also known as “Big-Endian Byte Order”.)
My First StructTM—struct sockaddr. This structure holds socket address information for

many types of sockets:
struct sockaddr {
 unsigned short sa_family; // address family, AF_xxx
 char sa_data[14]; // 14 bytes of protocol address
};

sa_family can be a variety of things, but it'll be AF_INET for everything we do in this
document. sa_data contains a destination address and port number for the socket. This is rather
unwieldy since you don't want to tediously pack the address in the sa_data by hand.

To deal with struct sockaddr, programmers created a parallel structure: struct
sockaddr_in (“in” for “Internet”.)
struct sockaddr_in {
 short int sin_family; // Address family
 unsigned short int sin_port; // Port number
 struct in_addr sin_addr; // Internet address
 unsigned char sin_zero[8]; // Same size as struct sockaddr
};

This structure makes it easy to reference elements of the socket address. Note that sin_zero
(which is included to pad the structure to the length of a struct sockaddr) should be set to
all zeros with the function memset(). Also, and this is the important bit, a pointer to a struct
sockaddr_in can be cast to a pointer to a struct sockaddr and vice-versa. So even though
connect() wants a struct sockaddr*, you can still use a struct sockaddr_in and cast it at
the last minute! Also, notice that sin_family corresponds to sa_family in a struct sockaddr
and should be set to “AF_INET”. Finally, the sin_port and sin_addr must be in Network Byte
Order!

“But,” you object, “how can the entire structure, struct in_addr sin_addr, be in
Network Byte Order?” This question requires careful examination of the structure struct
in_addr, one of the worst unions alive:
// Internet address (a structure for historical reasons)
struct in_addr {
 uint32_t s_addr; // that's a 32-bit int (4 bytes)

10 Beej's Guide to Network Programming

};

Well, it used to be a union, but now those days seem to be gone. Good riddance. So if you have
declared ina to be of type struct sockaddr_in, then ina.sin_addr.s_addr references the
4-byte IP address (in Network Byte Order). Note that even if your system still uses the God-awful
union for struct in_addr, you can still reference the 4-byte IP address in exactly the same way
as I did above (this due to #defines.)

3.1. Convert the Natives!
We've now been lead right into the next section. There's been too much talk about this

Network to Host Byte Order conversion—now is the time for action!
All righty. There are two types that you can convert: short (two bytes) and long (four bytes).

These functions work for the unsigned variations as well. Say you want to convert a short from
Host Byte Order to Network Byte Order. Start with “h” for “host”, follow it with “to”, then “n” for
“network”, and “s” for “short”: h-to-n-s, or htons() (read: “Host to Network Short”).

It's almost too easy...
You can use every combination of “n”, “h”, “s”, and “l” you want, not counting the really

stupid ones. For example, there is NOT a stolh() (“Short to Long Host”) function—not at this
party, anyway. But there are:

htons() host to network short

htonl() host to network long

ntohs() network to host short

ntohl() network to host long

Now, you may think you're wising up to this. You might think, “What do I do if I have to
change byte order on a char?” Then you might think, “Uh, never mind.” You might also think that
since your 68000 machine already uses network byte order, you don't have to call htonl() on your
IP addresses. You would be right, BUT if you try to port to a machine that has reverse network byte
order, your program will fail. Be portable! This is a Unix world! (As much as Bill Gates would like
to think otherwise.) Remember: put your bytes in Network Byte Order before you put them on the
network.

A final point: why do sin_addr and sin_port need to be in Network Byte Order in a
struct sockaddr_in, but sin_family does not? The answer: sin_addr and sin_port get
encapsulated in the packet at the IP and UDP layers, respectively. Thus, they must be in Network
Byte Order. However, the sin_family field is only used by the kernel to determine what type of
address the structure contains, so it must be in Host Byte Order. Also, since sin_family does not
get sent out on the network, it can be in Host Byte Order.

3.2. IP Addresses and How to Deal With Them
Fortunately for you, there are a bunch of functions that allow you to manipulate IP addresses.

No need to figure them out by hand and stuff them in a long with the << operator.
First, let's say you have a struct sockaddr_in ina, and you have an IP address

“10.12.110.57” that you want to store into it. The function you want to use, inet_addr(),
converts an IP address in numbers-and-dots notation into an unsigned long. The assignment can be
made as follows:
ina.sin_addr.s_addr = inet_addr("10.12.110.57");

structs and Data Handling 11

Notice that inet_addr() returns the address in Network Byte Order already—you don't have
to call htonl(). Swell!

Now, the above code snippet isn't very robust because there is no error checking. See,
inet_addr() returns -1 on error. Remember binary numbers? (unsigned)-1 just happens
to correspond to the IP address 255.255.255.255! That's the broadcast address! Wrongo.
Remember to do your error checking properly.

Actually, there's a cleaner interface you can use instead of inet_addr(): it's called
inet_aton() (“aton” means “ascii to network”):
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_aton(const char *cp, struct in_addr *inp);

And here's a sample usage, while packing a struct sockaddr_in (this example will make
more sense to you when you get to the sections on bind() and connect().)
struct sockaddr_in my_addr;

my_addr.sin_family = AF_INET; // host byte order
my_addr.sin_port = htons(MYPORT); // short, network byte order
inet_aton("10.12.110.57", &(my_addr.sin_addr));
memset(my_addr.sin_zero, '\0', sizeof my_addr.sin_zero);

inet_aton(), unlike practically every other socket-related function, returns non-zero on
success, and zero on failure. And the address is passed back in inp.

Unfortunately, not all platforms implement inet_aton() so, although its use is preferred, the
older more common inet_addr() is used in this guide.

All right, now you can convert string IP addresses to their binary representations. What
about the other way around? What if you have a struct in_addr and you want to print it in
numbers-and-dots notation? In this case, you'll want to use the function inet_ntoa() (“ntoa”
means “network to ascii”) like this:
printf("%s", inet_ntoa(ina.sin_addr));

That will print the IP address. Note that inet_ntoa() takes a struct in_addr as an
argument, not a long. Also notice that it returns a pointer to a char. This points to a statically stored
char array within inet_ntoa() so that each time you call inet_ntoa() it will overwrite the last
IP address you asked for. For example:
char *a1, *a2;

a1 = inet_ntoa(ina1.sin_addr); // this is 192.168.4.14
a2 = inet_ntoa(ina2.sin_addr); // this is 10.12.110.57
printf("address 1: %s\n",a1);
printf("address 2: %s\n",a2);

will print:
address 1: 10.12.110.57
address 2: 10.12.110.57

If you need to save the address, strcpy() it to your own character array.
That's all on this topic for now. Later, you'll learn to convert a string like “whitehouse.gov”

into its corresponding IP address (see DNS, below.)

12 Beej's Guide to Network Programming

3.2.1. Private (Or Disconnected) Networks
Lots of places have a firewall that hides the network from the rest of the world for their

own protection. And often times, the firewall translates “internal” IP addresses to “external”
(that everyone else in the world knows) IP addresses using a process called Network Address
Translation, or NAT.

Are you getting nervous yet? “Where's he going with all this weird stuff?”
Well, relax and buy yourself a drink, because as a beginner, you don't even have to worry

about NAT, since it's done for you transparently. But I wanted to talk about the network behind the
firewall in case you started getting confused by the network numbers you were seeing.

For instance, I have a firewall at home. I have two static IP addresses allocated to me by
the DSL company, and yet I have seven computers on the network. How is this possible? Two
computers can't share the same IP address, or else the data wouldn't know which one to go to!

The answer is: they don't share the same IP addresses. They are on a private network with 24
million IP addresses allocated to it. They are all just for me. Well, all for me as far as anyone else is
concerned. Here's what's happening:

If I log into a remote computer, it tells me I'm logged in from 64.81.52.10 (not my real IP). But
if I ask my local computer what it's IP address is, it says 10.0.0.5. Who is translating the IP address
from one to the other? That's right, the firewall! It's doing NAT!

10.x.x.x is one of a few reserved networks that are only to be used either on fully disconnected
networks, or on networks that are behind firewalls. The details of which private network numbers
are available for you to use are outlined in RFC 1918 10, but some common ones you'll see are
10.x.x.x and 192.168.x.x, where x is 0-255, generally. Less common is 172.y.x.x, where y goes
between 16 and 31.

Networks behind a NATing firewall don't need to be on one of these reserved networks, but
they commonly are.

10. http://tools.ietf.org/html/rfc1918

http://tools.ietf.org/html/rfc1918

13

4. System Calls or Bust

This is the section where we get into the system calls that allow you to access the network
functionality of a Unix box. When you call one of these functions, the kernel takes over and does all
the work for you automagically.

The place most people get stuck around here is what order to call these things in. In that, the
man pages are no use, as you've probably discovered. Well, to help with that dreadful situation, I've
tried to lay out the system calls in the following sections in exactly (approximately) the same order
that you'll need to call them in your programs.

That, coupled with a few pieces of sample code here and there, some milk and cookies (which
I fear you will have to supply yourself), and some raw guts and courage, and you'll be beaming data
around the Internet like the Son of Jon Postel!

4.1. socket()—Get the File Descriptor!
I guess I can put it off no longer—I have to talk about the socket() system call. Here's the

breakdown:
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

But what are these arguments? First, domain should be set to “PF_INET”. Next, the type
argument tells the kernel what kind of socket this is: SOCK_STREAM or SOCK_DGRAM. Finally, just
set protocol to “0” to have socket() choose the correct protocol based on the type. (Notes:
there are many more domains than I've listed. There are many more types than I've listed. See the
socket() man page. Also, there's a “better” way to get the protocol, but specifying 0 works in
99.9% of all cases. See the getprotobyname() man page if you're curious.)

socket() simply returns to you a socket descriptor that you can use in later system calls, or
-1 on error. The global variable errno is set to the error's value (see the perror() man page.)

(This PF_INET thing is a close relative of the AF_INET that you used when initializing the
sin_family field in your struct sockaddr_in. In fact, they're so closely related that they
actually have the same value, and many programmers will call socket() and pass AF_INET as the
first argument instead of PF_INET. Now, get some milk and cookies, because it's times for a story.
Once upon a time, a long time ago, it was thought that maybe a address family (what the “AF”
in “AF_INET” stands for) might support several protocols that were referred to by their protocol
family (what the “PF” in “PF_INET” stands for). That didn't happen. And they all lived happily ever
after, The End. So the most correct thing to do is to use AF_INET in your struct sockaddr_in
and PF_INET in your call to socket().)

Fine, fine, fine, but what good is this socket? The answer is that it's really no good by itself,
and you need to read on and make more system calls for it to make any sense.

4.2. bind()—What port am I on?
Once you have a socket, you might have to associate that socket with a port on your local

machine. (This is commonly done if you're going to listen() for incoming connections on a
specific port—MUDs do this when they tell you to “telnet to x.y.z port 6969”.) The port number

14 Beej's Guide to Network Programming

is used by the kernel to match an incoming packet to a certain process's socket descriptor. If you're
going to only be doing a connect(), this may be unnecessary. Read it anyway, just for kicks.

Here is the synopsis for the bind() system call:
#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, int addrlen);

sockfd is the socket file descriptor returned by socket(). my_addr is a pointer to a struct
sockaddr that contains information about your address, namely, port and IP address. addrlen can
be set to sizeof *my_addr or sizeof(struct sockaddr).

Whew. That's a bit to absorb in one chunk. Let's have an example:
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define MYPORT 3490

int main(void)
{
 int sockfd;
 struct sockaddr_in my_addr;

 sockfd = socket(PF_INET, SOCK_STREAM, 0); // do some error checking!

 my_addr.sin_family = AF_INET; // host byte order
 my_addr.sin_port = htons(MYPORT); // short, network byte order
 my_addr.sin_addr.s_addr = inet_addr("10.12.110.57");
 memset(my_addr.sin_zero, '\0', sizeof my_addr.sin_zero);

 // don't forget your error checking for bind():
 bind(sockfd, (struct sockaddr *)&my_addr, sizeof my_addr);
 .
 .
 .

There are a few things to notice here: my_addr.sin_port is in Network Byte Order. So is
my_addr.sin_addr.s_addr. Another thing to watch out for is that the header files might differ
from system to system. To be sure, you should check your local man pages.

Lastly, on the topic of bind(), I should mention that some of the process of getting your own
IP address and/or port can be automated:
my_addr.sin_port = 0; // choose an unused port at random
my_addr.sin_addr.s_addr = INADDR_ANY; // use my IP address

See, by setting my_addr.sin_port to zero, you are telling bind() to choose the port for
you. Likewise, by setting my_addr.sin_addr.s_addr to INADDR_ANY, you are telling it to
automatically fill in the IP address of the machine the process is running on.

If you are into noticing little things, you might have seen that I didn't put INADDR_ANY into
Network Byte Order! Naughty me. However, I have inside info: INADDR_ANY is really zero! Zero
still has zero on bits even if you rearrange the bytes. However, purists will point out that there could
be a parallel dimension where INADDR_ANY is, say, 12 and that my code won't work there. That's
okay with me:

System Calls or Bust 15

my_addr.sin_port = htons(0); // choose an unused port at random
my_addr.sin_addr.s_addr = htonl(INADDR_ANY); // use my IP address

Now we're so portable you probably wouldn't believe it. I just wanted to point that out, since
most of the code you come across won't bother running INADDR_ANY through htonl().

bind() also returns -1 on error and sets errno to the error's value.
Another thing to watch out for when calling bind(): don't go underboard with your port

numbers. All ports below 1024 are RESERVED (unless you're the superuser)! You can have any
port number above that, right up to 65535 (provided they aren't already being used by another
program.)

Sometimes, you might notice, you try to rerun a server and bind() fails, claiming “Address
already in use.” What does that mean? Well, a little bit of a socket that was connected is still
hanging around in the kernel, and it's hogging the port. You can either wait for it to clear (a minute
or so), or add code to your program allowing it to reuse the port, like this:
int yes=1;
//char yes='1'; // Solaris people use this

// lose the pesky "Address already in use" error message
if (setsockopt(listener,SOL_SOCKET,SO_REUSEADDR,&yes,sizeof(int)) == -1) {
 perror("setsockopt");
 exit(1);
}

One small extra final note about bind(): there are times when you won't absolutely have to
call it. If you are connect()ing to a remote machine and you don't care what your local port is (as
is the case with telnet where you only care about the remote port), you can simply call connect(),
it'll check to see if the socket is unbound, and will bind() it to an unused local port if necessary.

4.3. connect()—Hey, you!
Let's just pretend for a few minutes that you're a telnet application. Your user commands you

(just like in the movie TRON) to get a socket file descriptor. You comply and call socket(). Next,
the user tells you to connect to “10.12.110.57” on port “23” (the standard telnet port.) Yow!
What do you do now?

Lucky for you, program, you're now perusing the section on connect()—how to connect to a
remote host. So read furiously onward! No time to lose!

The connect() call is as follows:
#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *serv_addr, int addrlen);

sockfd is our friendly neighborhood socket file descriptor, as returned by the socket() call,
serv_addr is a struct sockaddr containing the destination port and IP address, and addrlen
can be set to sizeof *serv_addr or sizeof(struct sockaddr).

Isn't this starting to make more sense? Let's have an example:
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define DEST_IP "10.12.110.57"
#define DEST_PORT 23

16 Beej's Guide to Network Programming

int main(void)
{
 int sockfd;
 struct sockaddr_in dest_addr; // will hold the destination addr

 sockfd = socket(PF_INET, SOCK_STREAM, 0); // do some error checking!

 dest_addr.sin_family = AF_INET; // host byte order
 dest_addr.sin_port = htons(DEST_PORT); // short, network byte order
 dest_addr.sin_addr.s_addr = inet_addr(DEST_IP);
 memset(dest_addr.sin_zero, '\0', sizeof dest_addr.sin_zero);

 // don't forget to error check the connect()!
 connect(sockfd, (struct sockaddr *)&dest_addr, sizeof dest_addr);
 .
 .
 .

Again, be sure to check the return value from connect()—it'll return -1 on error and set the
variable errno.

Also, notice that we didn't call bind(). Basically, we don't care about our local port number;
we only care where we're going (the remote port). The kernel will choose a local port for us, and the
site we connect to will automatically get this information from us. No worries.

4.4. listen()—Will somebody please call me?
Ok, time for a change of pace. What if you don't want to connect to a remote host. Say, just for

kicks, that you want to wait for incoming connections and handle them in some way. The process is
two step: first you listen(), then you accept() (see below.)

The listen call is fairly simple, but requires a bit of explanation:
int listen(int sockfd, int backlog);

sockfd is the usual socket file descriptor from the socket() system call. backlog is the
number of connections allowed on the incoming queue. What does that mean? Well, incoming
connections are going to wait in this queue until you accept() them (see below) and this is the
limit on how many can queue up. Most systems silently limit this number to about 20; you can
probably get away with setting it to 5 or 10.

Again, as per usual, listen() returns -1 and sets errno on error.
Well, as you can probably imagine, we need to call bind() before we call listen() or

the kernel will have us listening on a random port. Bleah! So if you're going to be listening for
incoming connections, the sequence of system calls you'll make is:
socket();
bind();
listen();
/* accept() goes here */

I'll just leave that in the place of sample code, since it's fairly self-explanatory. (The code in the
accept() section, below, is more complete.) The really tricky part of this whole sha-bang is the
call to accept().

4.5. accept()—“Thank you for calling port 3490.”
Get ready—the accept() call is kinda weird! What's going to happen is this: someone far

far away will try to connect() to your machine on a port that you are listen()ing on. Their

System Calls or Bust 17

connection will be queued up waiting to be accept()ed. You call accept() and you tell it to get
the pending connection. It'll return to you a brand new socket file descriptor to use for this single
connection! That's right, suddenly you have two socket file descriptors for the price of one! The
original one is still listening on your port and the newly created one is finally ready to send() and
recv(). We're there!

The call is as follows:
#include <sys/types.h>
#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

sockfd is the listen()ing socket descriptor. Easy enough. addr will usually be a pointer to
a local struct sockaddr_in. This is where the information about the incoming connection will
go (and with it you can determine which host is calling you from which port). addrlen is a local
integer variable that should be set to sizeof *addr or sizeof(struct sockaddr_in) before
its address is passed to accept(). Accept will not put more than that many bytes into addr. If it
puts fewer in, it'll change the value of addrlen to reflect that.

Guess what? accept() returns -1 and sets errno if an error occurs. Betcha didn't figure that.
Like before, this is a bunch to absorb in one chunk, so here's a sample code fragment for your

perusal:
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define MYPORT 3490 // the port users will be connecting to

#define BACKLOG 10 // how many pending connections queue will hold

int main(void)
{
 int sockfd, new_fd; // listen on sock_fd, new connection on new_fd
 struct sockaddr_in my_addr; // my address information
 struct sockaddr_in their_addr; // connector's address information
 int sin_size;

 sockfd = socket(PF_INET, SOCK_STREAM, 0); // do some error checking!

 my_addr.sin_family = AF_INET; // host byte order
 my_addr.sin_port = htons(MYPORT); // short, network byte order
 my_addr.sin_addr.s_addr = INADDR_ANY; // auto-fill with my IP
 memset(my_addr.sin_zero, '\0', sizeof my_addr.sin_zero);

 // don't forget your error checking for these calls:
 bind(sockfd, (struct sockaddr *)&my_addr, sizeof my_addr);

 listen(sockfd, BACKLOG);

 sin_size = sizeof their_addr;
 new_fd = accept(sockfd, (struct sockaddr *)&their_addr, &sin_size);
 .
 .
 .

18 Beej's Guide to Network Programming

Again, note that we will use the socket descriptor new_fd for all send() and recv() calls. If
you're only getting one single connection ever, you can close() the listening sockfd in order to
prevent more incoming connections on the same port, if you so desire.

4.6. send() and recv()—Talk to me, baby!
These two functions are for communicating over stream sockets or connected datagram

sockets. If you want to use regular unconnected datagram sockets, you'll need to see the section on
sendto() and recvfrom(), below.

The send() call:
int send(int sockfd, const void *msg, int len, int flags);

sockfd is the socket descriptor you want to send data to (whether it's the one returned by
socket() or the one you got with accept().) msg is a pointer to the data you want to send, and
len is the length of that data in bytes. Just set flags to 0. (See the send() man page for more
information concerning flags.)

Some sample code might be:
char *msg = "Beej was here!";
int len, bytes_sent;
.
.
.
len = strlen(msg);
bytes_sent = send(sockfd, msg, len, 0);
.
.
.

send() returns the number of bytes actually sent out—this might be less than the number you
told it to send! See, sometimes you tell it to send a whole gob of data and it just can't handle it. It'll
fire off as much of the data as it can, and trust you to send the rest later. Remember, if the value
returned by send() doesn't match the value in len, it's up to you to send the rest of the string. The
good news is this: if the packet is small (less than 1K or so) it will probably manage to send the
whole thing all in one go. Again, -1 is returned on error, and errno is set to the error number.

The recv() call is similar in many respects:
int recv(int sockfd, void *buf, int len, unsigned int flags);

sockfd is the socket descriptor to read from, buf is the buffer to read the information into,
len is the maximum length of the buffer, and flags can again be set to 0. (See the recv() man
page for flag information.)

recv() returns the number of bytes actually read into the buffer, or -1 on error (with errno
set, accordingly.)

Wait! recv() can return 0. This can mean only one thing: the remote side has closed the
connection on you! A return value of 0 is recv()'s way of letting you know this has occurred.

There, that was easy, wasn't it? You can now pass data back and forth on stream sockets!
Whee! You're a Unix Network Programmer!

4.7. sendto() and recvfrom()—Talk to me, DGRAM-style
“This is all fine and dandy,” I hear you saying, “but where does this leave me with

unconnected datagram sockets?” No problemo, amigo. We have just the thing.

System Calls or Bust 19

Since datagram sockets aren't connected to a remote host, guess which piece of information we
need to give before we send a packet? That's right! The destination address! Here's the scoop:
int sendto(int sockfd, const void *msg, int len, unsigned int flags,
 const struct sockaddr *to, socklen_t tolen);

As you can see, this call is basically the same as the call to send() with the addition of two
other pieces of information. to is a pointer to a struct sockaddr (which you'll probably have as
a struct sockaddr_in and cast it at the last minute) which contains the destination IP address
and port. tolen, an int deep-down, can simply be set to sizeof *to or sizeof(struct
sockaddr).

Just like with send(), sendto() returns the number of bytes actually sent (which, again,
might be less than the number of bytes you told it to send!), or -1 on error.

Equally similar are recv() and recvfrom(). The synopsis of recvfrom() is:
int recvfrom(int sockfd, void *buf, int len, unsigned int flags,
 struct sockaddr *from, int *fromlen);

Again, this is just like recv() with the addition of a couple fields. from is a pointer to
a local struct sockaddr that will be filled with the IP address and port of the originating
machine. fromlen is a pointer to a local int that should be initialized to sizeof *from or
sizeof(struct sockaddr). When the function returns, fromlen will contain the length of the
address actually stored in from.

recvfrom() returns the number of bytes received, or -1 on error (with errno set
accordingly.)

Remember, if you connect() a datagram socket, you can then simply use send() and
recv() for all your transactions. The socket itself is still a datagram socket and the packets still use
UDP, but the socket interface will automatically add the destination and source information for you.

4.8. close() and shutdown()—Get outta my face!
Whew! You've been send()ing and recv()ing data all day long, and you've had it. You're

ready to close the connection on your socket descriptor. This is easy. You can just use the regular
Unix file descriptor close() function:
close(sockfd);

This will prevent any more reads and writes to the socket. Anyone attempting to read or write
the socket on the remote end will receive an error.

Just in case you want a little more control over how the socket closes, you can use the
shutdown() function. It allows you to cut off communication in a certain direction, or both ways
(just like close() does.) Synopsis:
int shutdown(int sockfd, int how);

sockfd is the socket file descriptor you want to shutdown, and how is one of the following:

0 Further receives are disallowed

1 Further sends are disallowed

2 Further sends and receives are disallowed (like close())

shutdown() returns 0 on success, and -1 on error (with errno set accordingly.)

20 Beej's Guide to Network Programming

If you deign to use shutdown() on unconnected datagram sockets, it will simply make the
socket unavailable for further send() and recv() calls (remember that you can use these if you
connect() your datagram socket.)

It's important to note that shutdown() doesn't actually close the file descriptor—it just
changes its usability. To free a socket descriptor, you need to use close().

Nothing to it.
(Except to remember that if you're using Windows and Winsock that you should call

closesocket() instead of close().)

4.9. getpeername()—Who are you?
This function is so easy.
It's so easy, I almost didn't give it it's own section. But here it is anyway.
The function getpeername() will tell you who is at the other end of a connected stream

socket. The synopsis:
#include <sys/socket.h>

int getpeername(int sockfd, struct sockaddr *addr, int *addrlen);

sockfd is the descriptor of the connected stream socket, addr is a pointer to a struct
sockaddr (or a struct sockaddr_in) that will hold the information about the other side of the
connection, and addrlen is a pointer to an int, that should be initialized to sizeof *addr or
sizeof(struct sockaddr).

The function returns -1 on error and sets errno accordingly.
Once you have their address, you can use inet_ntoa() or gethostbyaddr() to print or get

more information. No, you can't get their login name. (Ok, ok. If the other computer is running an
ident daemon, this is possible. This, however, is beyond the scope of this document. Check out RFC
1413 11 for more info.)

4.10. gethostname()—Who am I?
Even easier than getpeername() is the function gethostname(). It returns the name of

the computer that your program is running on. The name can then be used by gethostbyname(),
below, to determine the IP address of your local machine.

What could be more fun? I could think of a few things, but they don't pertain to socket
programming. Anyway, here's the breakdown:
#include <unistd.h>

int gethostname(char *hostname, size_t size);

The arguments are simple: hostname is a pointer to an array of chars that will contain the
hostname upon the function's return, and size is the length in bytes of the hostname array.

The function returns 0 on successful completion, and -1 on error, setting errno as usual.

4.11. DNS—You say “whitehouse.gov”, I say “63.161.169.137”
In case you don't know what DNS is, it stands for “Domain Name Service”. In a nutshell, you

tell it what the human-readable address is for a site, and it'll give you the IP address (so you can use
it with bind(), connect(), sendto(), or whatever you need it for.) This way, when someone
enters:
$ telnet whitehouse.gov

11. http://tools.ietf.org/html/rfc1413

http://tools.ietf.org/html/rfc1413
http://tools.ietf.org/html/rfc1413

System Calls or Bust 21

telnet can find out that it needs to connect() to “63.161.169.137”.
But how does it work? You'll be using the function gethostbyname():

#include <netdb.h>

struct hostent *gethostbyname(const char *name);

As you see, it returns a pointer to a struct hostent, the layout of which is as follows:
struct hostent {
 char *h_name;
 char **h_aliases;
 int h_addrtype;
 int h_length;
 char **h_addr_list;
};
#define h_addr h_addr_list[0]

And here are the descriptions of the fields in the struct hostent:

h_name Official name of the host.

h_aliases A NULL-terminated array of alternate names for the host.

h_addrtype The type of address being returned; usually AF_INET.

h_length The length of the address in bytes.

h_addr_list A zero-terminated array of network addresses for the host. Host addresses
are in Network Byte Order.

h_addr The first address in h_addr_list.

gethostbyname() returns a pointer to the filled struct hostent, or NULL on error. (But
errno is not set—h_errno is set instead. See herror(), below.)

But how is it used? Sometimes (as we find from reading computer manuals), just spewing the
information at the reader is not enough. This function is certainly easier to use than it looks.

Here's an example program 12:
/*
** getip.c -- a hostname lookup demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int main(int argc, char *argv[])
{
 struct hostent *h;

 if (argc != 2) { // error check the command line
 fprintf(stderr,"usage: getip address\n");
 exit(1);
 }

12. http://beej.us/guide/bgnet/examples/getip.c

http://beej.us/guide/bgnet/examples/getip.c

22 Beej's Guide to Network Programming

 if ((h=gethostbyname(argv[1])) == NULL) { // get the host info
 herror("gethostbyname");
 exit(1);
 }

 printf("Host name : %s\n", h->h_name);
 printf("IP Address : %s\n", inet_ntoa(*((struct in_addr *)h->h_addr)));

 return 0;
}

With gethostbyname(), you can't use perror() to print error message (since errno is not
used). Instead, call herror().

It's pretty straightforward. You simply pass the string that contains the machine name
(“whitehouse.gov”) to gethostbyname(), and then grab the information out of the returned
struct hostent.

The only possible weirdness might be in the printing of the IP address, above. h->h_addr
is a char*, but inet_ntoa() wants a struct in_addr passed to it. So I cast h->h_addr to a
struct in_addr*, then dereference it to get at the data.

23

5. Client-Server Background

It's a client-server world, baby. Just about everything on the network deals with client
processes talking to server processes and vice-versa. Take telnet, for instance. When you connect to
a remote host on port 23 with telnet (the client), a program on that host (called telnetd, the server)
springs to life. It handles the incoming telnet connection, sets you up with a login prompt, etc.

Client-Server Interaction.

The exchange of information between client and server is summarized in the above diagram.
Note that the client-server pair can speak SOCK_STREAM, SOCK_DGRAM, or anything else

(as long as they're speaking the same thing.) Some good examples of client-server pairs are
telnet/telnetd, ftp/ftpd, or bootp/bootpd. Every time you use ftp, there's a remote program, ftpd,
that serves you.

Often, there will only be one server on a machine, and that server will handle multiple clients
using fork(). The basic routine is: server will wait for a connection, accept() it, and fork() a
child process to handle it. This is what our sample server does in the next section.

5.1. A Simple Stream Server
All this server does is send the string “Hello, World!\n” out over a stream connection. All

you need to do to test this server is run it in one window, and telnet to it from another with:
$ telnet remotehostname 3490

where remotehostname is the name of the machine you're running it on.
The server code 13: (Note: a trailing backslash on a line means that the line is continued on the

next.)
/*
** server.c -- a stream socket server demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/wait.h>
#include <signal.h>

13. http://beej.us/guide/bgnet/examples/server.c

http://beej.us/guide/bgnet/examples/server.c

24 Beej's Guide to Network Programming

#define MYPORT 3490 // the port users will be connecting to

#define BACKLOG 10 // how many pending connections queue will hold

void sigchld_handler(int s)
{
 while(waitpid(-1, NULL, WNOHANG) > 0);
}

int main(void)
{
 int sockfd, new_fd; // listen on sock_fd, new connection on new_fd
 struct sockaddr_in my_addr; // my address information
 struct sockaddr_in their_addr; // connector's address information
 socklen_t sin_size;
 struct sigaction sa;
 int yes=1;

 if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(int)) == -1) {
 perror("setsockopt");
 exit(1);
 }

 my_addr.sin_family = AF_INET; // host byte order
 my_addr.sin_port = htons(MYPORT); // short, network byte order
 my_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my IP
 memset(my_addr.sin_zero, '\0', sizeof my_addr.sin_zero);

 if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof my_addr) == -1) {
 perror("bind");
 exit(1);
 }

 if (listen(sockfd, BACKLOG) == -1) {
 perror("listen");
 exit(1);
 }

 sa.sa_handler = sigchld_handler; // reap all dead processes
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = SA_RESTART;
 if (sigaction(SIGCHLD, &sa, NULL) == -1) {
 perror("sigaction");
 exit(1);
 }

 while(1) { // main accept() loop
 sin_size = sizeof their_addr;
 if ((new_fd = accept(sockfd, (struct sockaddr *)&their_addr, \
 &sin_size)) == -1) {
 perror("accept");
 continue;
 }
 printf("server: got connection from %s\n", \
 inet_ntoa(their_addr.sin_addr));

Client-Server Background 25

 if (!fork()) { // this is the child process
 close(sockfd); // child doesn't need the listener
 if (send(new_fd, "Hello, world!\n", 14, 0) == -1)
 perror("send");
 close(new_fd);
 exit(0);
 }
 close(new_fd); // parent doesn't need this
 }

 return 0;
}

In case you're curious, I have the code in one big main() function for (I feel) syntactic clarity.
Feel free to split it into smaller functions if it makes you feel better.

(Also, this whole sigaction() thing might be new to you—that's ok. The code that's there is
responsible for reaping zombie processes that appear as the fork()ed child processes exit. If you
make lots of zombies and don't reap them, your system administrator will become agitated.)

You can get the data from this server by using the client listed in the next section.

5.2. A Simple Stream Client
This guy's even easier than the server. All this client does is connect to the host you specify on

the command line, port 3490. It gets the string that the server sends.
The client source 14:

/*
** client.c -- a stream socket client demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>

#define PORT 3490 // the port client will be connecting to

#define MAXDATASIZE 100 // max number of bytes we can get at once

int main(int argc, char *argv[])
{
 int sockfd, numbytes;
 char buf[MAXDATASIZE];
 struct hostent *he;
 struct sockaddr_in their_addr; // connector's address information

 if (argc != 2) {
 fprintf(stderr,"usage: client hostname\n");
 exit(1);
 }

 if ((he=gethostbyname(argv[1])) == NULL) { // get the host info
 herror("gethostbyname");

14. http://beej.us/guide/bgnet/examples/client.c

http://beej.us/guide/bgnet/examples/client.c

26 Beej's Guide to Network Programming

 exit(1);
 }

 if ((sockfd = socket(PF_INET, SOCK_STREAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 their_addr.sin_family = AF_INET; // host byte order
 their_addr.sin_port = htons(PORT); // short, network byte order
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 memset(their_addr.sin_zero, '\0', sizeof their_addr.sin_zero);

 if (connect(sockfd, (struct sockaddr *)&their_addr,
 sizeof their_addr) == -1) {
 perror("connect");
 exit(1);
 }

 if ((numbytes=recv(sockfd, buf, MAXDATASIZE-1, 0)) == -1) {
 perror("recv");
 exit(1);
 }

 buf[numbytes] = '\0';

 printf("Received: %s",buf);

 close(sockfd);

 return 0;
}

Notice that if you don't run the server before you run the client, connect() returns
“Connection refused”. Very useful.

5.3. Datagram Sockets
I really don't have that much to talk about here, so I'll just present a couple of sample

programs: talker.c and listener.c.
listener sits on a machine waiting for an incoming packet on port 4950. talker sends a packet

to that port, on the specified machine, that contains whatever the user enters on the command line.
Here is the source for listener.c 15:

/*
** listener.c -- a datagram sockets "server" demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define MYPORT 4950 // the port users will be connecting to
15. http://beej.us/guide/bgnet/examples/listener.c

http://beej.us/guide/bgnet/examples/listener.c

Client-Server Background 27

#define MAXBUFLEN 100

int main(void)
{
 int sockfd;
 struct sockaddr_in my_addr; // my address information
 struct sockaddr_in their_addr; // connector's address information
 socklen_t addr_len;
 int numbytes;
 char buf[MAXBUFLEN];

 if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 my_addr.sin_family = AF_INET; // host byte order
 my_addr.sin_port = htons(MYPORT); // short, network byte order
 my_addr.sin_addr.s_addr = INADDR_ANY; // automatically fill with my IP
 memset(my_addr.sin_zero, '\0', sizeof my_addr.sin_zero);

 if (bind(sockfd, (struct sockaddr *)&my_addr, sizeof my_addr) == -1) {
 perror("bind");
 exit(1);
 }

 addr_len = sizeof their_addr;
 if ((numbytes = recvfrom(sockfd, buf, MAXBUFLEN-1 , 0,
 (struct sockaddr *)&their_addr, &addr_len)) == -1) {
 perror("recvfrom");
 exit(1);
 }

 printf("got packet from %s\n",inet_ntoa(their_addr.sin_addr));
 printf("packet is %d bytes long\n",numbytes);
 buf[numbytes] = '\0';
 printf("packet contains \"%s\"\n",buf);

 close(sockfd);

 return 0;
}

Notice that in our call to socket() we're finally using SOCK_DGRAM. Also, note that there's no
need to listen() or accept(). This is one of the perks of using unconnected datagram sockets!

Next comes the source for talker.c 16:
/*
** talker.c -- a datagram "client" demo
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>

16. http://beej.us/guide/bgnet/examples/talker.c

http://beej.us/guide/bgnet/examples/talker.c

28 Beej's Guide to Network Programming

#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define SERVERPORT 4950 // the port users will be connecting to

int main(int argc, char *argv[])
{
 int sockfd;
 struct sockaddr_in their_addr; // connector's address information
 struct hostent *he;
 int numbytes;

 if (argc != 3) {
 fprintf(stderr,"usage: talker hostname message\n");
 exit(1);
 }

 if ((he=gethostbyname(argv[1])) == NULL) { // get the host info
 herror("gethostbyname");
 exit(1);
 }

 if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 their_addr.sin_family = AF_INET; // host byte order
 their_addr.sin_port = htons(SERVERPORT); // short, network byte order
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 memset(their_addr.sin_zero, '\0', sizeof their_addr.sin_zero);

 if ((numbytes = sendto(sockfd, argv[2], strlen(argv[2]), 0,
 (struct sockaddr *)&their_addr, sizeof their_addr)) == -1) {
 perror("sendto");
 exit(1);
 }

 printf("sent %d bytes to %s\n", numbytes, inet_ntoa(their_addr.sin_addr));

 close(sockfd);

 return 0;
}

And that's all there is to it! Run listener on some machine, then run talker on another. Watch
them communicate! Fun G-rated excitement for the entire nuclear family!

Except for one more tiny detail that I've mentioned many times in the past: connected
datagram sockets. I need to talk about this here, since we're in the datagram section of the
document. Let's say that talker calls connect() and specifies the listener's address. From that
point on, talker may only sent to and receive from the address specified by connect(). For
this reason, you don't have to use sendto() and recvfrom(); you can simply use send() and
recv().

29

6. Slightly Advanced Techniques

These aren't really advanced, but they're getting out of the more basic levels we've already
covered. In fact, if you've gotten this far, you should consider yourself fairly accomplished in the
basics of Unix network programming! Congratulations!

So here we go into the brave new world of some of the more esoteric things you might want to
learn about sockets. Have at it!

6.1. Blocking
Blocking. You've heard about it—now what the heck is it? In a nutshell, “block” is techie

jargon for “sleep”. You probably noticed that when you run listener, above, it just sits there
until a packet arrives. What happened is that it called recvfrom(), there was no data, and so
recvfrom() is said to “block” (that is, sleep there) until some data arrives.

Lots of functions block. accept() blocks. All the recv() functions block. The reason
they can do this is because they're allowed to. When you first create the socket descriptor with
socket(), the kernel sets it to blocking. If you don't want a socket to be blocking, you have to
make a call to fcntl():
#include <unistd.h>
#include <fcntl.h>
.
.
.
sockfd = socket(PF_INET, SOCK_STREAM, 0);
fcntl(sockfd, F_SETFL, O_NONBLOCK);
.
.
.

By setting a socket to non-blocking, you can effectively “poll” the socket for information. If
you try to read from a non-blocking socket and there's no data there, it's not allowed to block—it
will return -1 and errno will be set to EWOULDBLOCK.

Generally speaking, however, this type of polling is a bad idea. If you put your program in a
busy-wait looking for data on the socket, you'll suck up CPU time like it was going out of style. A
more elegant solution for checking to see if there's data waiting to be read comes in the following
section on select().

6.2. select()—Synchronous I/O Multiplexing
This function is somewhat strange, but it's very useful. Take the following situation: you

are a server and you want to listen for incoming connections as well as keep reading from the
connections you already have.

No problem, you say, just an accept() and a couple of recv()s. Not so fast, buster! What if
you're blocking on an accept() call? How are you going to recv() data at the same time? “Use
non-blocking sockets!” No way! You don't want to be a CPU hog. What, then?

select() gives you the power to monitor several sockets at the same time. It'll tell you which
ones are ready for reading, which are ready for writing, and which sockets have raised exceptions, if
you really want to know that.

Without any further ado, I'll offer the synopsis of select():
#include <sys/time.h>

30 Beej's Guide to Network Programming

#include <sys/types.h>
#include <unistd.h>

int select(int numfds, fd_set *readfds, fd_set *writefds,
 fd_set *exceptfds, struct timeval *timeout);

The function monitors “sets” of file descriptors; in particular readfds, writefds, and
exceptfds. If you want to see if you can read from standard input and some socket descriptor,
sockfd, just add the file descriptors 0 and sockfd to the set readfds. The parameter numfds
should be set to the values of the highest file descriptor plus one. In this example, it should be set to
sockfd+1, since it is assuredly higher than standard input (0).

When select() returns, readfds will be modified to reflect which of the file descriptors you
selected which is ready for reading. You can test them with the macro FD_ISSET(), below.

Before progressing much further, I'll talk about how to manipulate these sets. Each set is of the
type fd_set. The following macros operate on this type:

FD_SET(int fd, fd_set *set); Add fd to the set.

FD_CLR(int fd, fd_set *set); Remove fd from the set.

FD_ISSET(int fd, fd_set *set); Return true if fd is in the set.

FD_ZERO(fd_set *set); Clear all entries from the set.

Finally, what is this weirded out struct timeval? Well, sometimes you don't want to
wait forever for someone to send you some data. Maybe every 96 seconds you want to print “Still
Going...” to the terminal even though nothing has happened. This time structure allows you to
specify a timeout period. If the time is exceeded and select() still hasn't found any ready file
descriptors, it'll return so you can continue processing.

The struct timeval has the follow fields:
struct timeval {
 int tv_sec; // seconds
 int tv_usec; // microseconds
};

Just set tv_sec to the number of seconds to wait, and set tv_usec to the number of
microseconds to wait. Yes, that's microseconds, not milliseconds. There are 1,000 microseconds
in a millisecond, and 1,000 milliseconds in a second. Thus, there are 1,000,000 microseconds in
a second. Why is it “usec”? The “u” is supposed to look like the Greek letter µ (Mu) that we use
for “micro”. Also, when the function returns, timeout might be updated to show the time still
remaining. This depends on what flavor of Unix you're running.

Yay! We have a microsecond resolution timer! Well, don't count on it. You'll probably have
to wait some part of your standard Unix timeslice no matter how small you set your struct
timeval.

Other things of interest: If you set the fields in your struct timeval to 0, select() will
timeout immediately, effectively polling all the file descriptors in your sets. If you set the parameter
timeout to NULL, it will never timeout, and will wait until the first file descriptor is ready.
Finally, if you don't care about waiting for a certain set, you can just set it to NULL in the call to
select().

The following code snippet 17 waits 2.5 seconds for something to appear on standard input:
/*

17. http://beej.us/guide/bgnet/examples/select.c

http://beej.us/guide/bgnet/examples/select.c

Slightly Advanced Techniques 31

** select.c -- a select() demo
*/

#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

#define STDIN 0 // file descriptor for standard input

int main(void)
{
 struct timeval tv;
 fd_set readfds;

 tv.tv_sec = 2;
 tv.tv_usec = 500000;

 FD_ZERO(&readfds);
 FD_SET(STDIN, &readfds);

 // don't care about writefds and exceptfds:
 select(STDIN+1, &readfds, NULL, NULL, &tv);

 if (FD_ISSET(STDIN, &readfds))
 printf("A key was pressed!\n");
 else
 printf("Timed out.\n");

 return 0;
}

If you're on a line buffered terminal, the key you hit should be RETURN or it will time out
anyway.

Now, some of you might think this is a great way to wait for data on a datagram socket—and
you are right: it might be. Some Unices can use select in this manner, and some can't. You should
see what your local man page says on the matter if you want to attempt it.

Some Unices update the time in your struct timeval to reflect the amount of time still
remaining before a timeout. But others do not. Don't rely on that occurring if you want to be
portable. (Use gettimeofday() if you need to track time elapsed. It's a bummer, I know, but that's
the way it is.)

What happens if a socket in the read set closes the connection? Well, in that case, select()
returns with that socket descriptor set as “ready to read”. When you actually do recv() from it,
recv() will return 0. That's how you know the client has closed the connection.

One more note of interest about select(): if you have a socket that is listen()ing, you
can check to see if there is a new connection by putting that socket's file descriptor in the readfds
set.

And that, my friends, is a quick overview of the almighty select() function.
But, by popular demand, here is an in-depth example. Unfortunately, the difference between

the dirt-simple example, above, and this one here is significant. But have a look, then read the
description that follows it.

32 Beej's Guide to Network Programming

This program 18 acts like a simple multi-user chat server. Start it running in one window, then
telnet to it (“telnet hostname 9034”) from multiple other windows. When you type something in
one telnet session, it should appear in all the others.
/*
** selectserver.c -- a cheezy multiperson chat server
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#define PORT 9034 // port we're listening on

int main(void)
{
 fd_set master; // master file descriptor list
 fd_set read_fds; // temp file descriptor list for select()
 struct sockaddr_in myaddr; // server address
 struct sockaddr_in remoteaddr; // client address
 int fdmax; // maximum file descriptor number
 int listener; // listening socket descriptor
 int newfd; // newly accept()ed socket descriptor
 char buf[256]; // buffer for client data
 int nbytes;
 int yes=1; // for setsockopt() SO_REUSEADDR, below
 socklen_t addrlen;
 int i, j;

 FD_ZERO(&master); // clear the master and temp sets
 FD_ZERO(&read_fds);

 // get the listener
 if ((listener = socket(PF_INET, SOCK_STREAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 // lose the pesky "address already in use" error message
 if (setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &yes, \
 sizeof(int)) == -1) {

 perror("setsockopt");
 exit(1);
 }

 // bind
 myaddr.sin_family = AF_INET;
 myaddr.sin_addr.s_addr = INADDR_ANY;
 myaddr.sin_port = htons(PORT);
 memset(myaddr.sin_zero, '\0', sizeof myaddr.sin_zero);
 if (bind(listener, (struct sockaddr *)&myaddr, sizeof myaddr) == -1) {
 perror("bind");

18. http://beej.us/guide/bgnet/examples/selectserver.c

http://beej.us/guide/bgnet/examples/selectserver.c

Slightly Advanced Techniques 33

 exit(1);
 }

 // listen
 if (listen(listener, 10) == -1) {
 perror("listen");
 exit(1);
 }

 // add the listener to the master set
 FD_SET(listener, &master);

 // keep track of the biggest file descriptor
 fdmax = listener; // so far, it's this one

 // main loop
 for(;;) {
 read_fds = master; // copy it
 if (select(fdmax+1, &read_fds, NULL, NULL, NULL) == -1) {
 perror("select");
 exit(1);
 }

 // run through the existing connections looking for data to read
 for(i = 0; i <= fdmax; i++) {
 if (FD_ISSET(i, &read_fds)) { // we got one!!
 if (i == listener) {
 // handle new connections
 addrlen = sizeof remoteaddr;
 if ((newfd = accept(listener, \
 (struct sockaddr *)&remoteaddr, &addrlen)) == -1) {

 perror("accept");
 } else {
 FD_SET(newfd, &master); // add to master set
 if (newfd > fdmax) { // keep track of the maximum
 fdmax = newfd;
 }
 printf("selectserver: new connection from %s on " \
 "socket %d\n", \
 inet_ntoa(remoteaddr.sin_addr), newfd);
 }
 } else {
 // handle data from a client
 if ((nbytes = recv(i, buf, sizeof buf, 0)) <= 0) {
 // got error or connection closed by client
 if (nbytes == 0) {
 // connection closed
 printf("selectserver: socket %d hung up\n", i);
 } else {
 perror("recv");
 }
 close(i); // bye!
 FD_CLR(i, &master); // remove from master set
 } else {
 // we got some data from a client
 for(j = 0; j <= fdmax; j++) {
 // send to everyone!
 if (FD_ISSET(j, &master)) {
 // except the listener and ourselves

34 Beej's Guide to Network Programming

 if (j != listener && j != i) {
 if (send(j, buf, nbytes, 0) == -1) {
 perror("send");
 }
 }
 }
 }
 }
 } // it's SO UGLY!
 }
 }
 }

 return 0;
}

Notice I have two file descriptor sets in the code: master and read_fds. The first, master,
holds all the socket descriptors that are currently connected, as well as the socket descriptor that is
listening for new connections.

The reason I have the master set is that select() actually changes the set you pass into it to
reflect which sockets are ready to read. Since I have to keep track of the connections from one call
of select() to the next, I must store these safely away somewhere. At the last minute, I copy the
master into the read_fds, and then call select().

But doesn't this mean that every time I get a new connection, I have to add it to the master
set? Yup! And every time a connection closes, I have to remove it from the master set? Yes, it
does.

Notice I check to see when the listener socket is ready to read. When it is, it means I have a
new connection pending, and I accept() it and add it to the master set. Similarly, when a client
connection is ready to read, and recv() returns 0, I know the client has closed the connection, and
I must remove it from the master set.

If the client recv() returns non-zero, though, I know some data has been received. So I get it,
and then go through the master list and send that data to all the rest of the connected clients.

And that, my friends, is a less-than-simple overview of the almighty select() function.
In addition, here is a bonus afterthought: there is another function called poll() which

behaves much the same way select() does, but with a different system for managing the file
descriptor sets. Check it out!

6.3. Handling Partial send()s
Remember back in the section about send(), above, when I said that send() might not

send all the bytes you asked it to? That is, you want it to send 512 bytes, but it returns 412. What
happened to the remaining 100 bytes?

Well, they're still in your little buffer waiting to be sent out. Due to circumstances beyond your
control, the kernel decided not to send all the data out in one chunk, and now, my friend, it's up to
you to get the data out there.

You could write a function like this to do it, too:
#include <sys/types.h>
#include <sys/socket.h>

int sendall(int s, char *buf, int *len)
{
 int total = 0; // how many bytes we've sent

Slightly Advanced Techniques 35

 int bytesleft = *len; // how many we have left to send
 int n;

 while(total < *len) {
 n = send(s, buf+total, bytesleft, 0);
 if (n == -1) { break; }
 total += n;
 bytesleft -= n;
 }

 *len = total; // return number actually sent here

 return n==-1?-1:0; // return -1 on failure, 0 on success
}

In this example, s is the socket you want to send the data to, buf is the buffer containing the
data, and len is a pointer to an int containing the number of bytes in the buffer.

The function returns -1 on error (and errno is still set from the call to send().) Also, the
number of bytes actually sent is returned in len. This will be the same number of bytes you asked it
to send, unless there was an error. sendall() will do it's best, huffing and puffing, to send the data
out, but if there's an error, it gets back to you right away.

For completeness, here's a sample call to the function:
char buf[10] = "Beej!";
int len;

len = strlen(buf);
if (sendall(s, buf, &len) == -1) {
 perror("sendall");
 printf("We only sent %d bytes because of the error!\n", len);
}

What happens on the receiver's end when part of a packet arrives? If the packets are variable
length, how does the receiver know when one packet ends and another begins? Yes, real-world
scenarios are a royal pain in the donkeys. You probably have to encapsulate (remember that from
the data encapsulation section way back there at the beginning?) Read on for details!

6.4. Serialization—How to Pack Data
It's easy enough to send text data across the network, you're finding, but what happens if you

want to send some “binary” data like ints or floats? It turns out you have a few options.

1. Convert the number into text with a function like sprintf(), then send the text. The
receiver will parse the text back into a number using a function like strtol().

2. Just send the data raw, passing a pointer to the data to send().

3. Encode the number into a portable binary form. The receiver will decode it.

Sneak preview! Tonight only!
[Curtain raises]
Beej says, “I prefer Method Three, above!”
[THE END]
Actually, they all have their drawbacks and advantages, but, like I said, in general, I prefer the

third method. First, though, let's talk about some of the drawbacks and advantages to the other two.

36 Beej's Guide to Network Programming

The first method, encoding the numbers as text before sending, has the advantage that you can
easily print and read the data that's coming over the wire. Sometimes a human-readable protocol
is excellent to use in a non-bandwidth-intensive situation, such as with Internet Relay Chat (IRC)
19. However, it has the disadvantage that it is slow to convert, and the results almost always take up
more space than the original number!

Method two: passing the raw data. This one is quite easy (but dangerous!): just take a pointer
to the data to send, and call send with it.
double d = 3490.15926535;

send(s, &d, sizeof d, 0); /* DANGER--non-portable! */

The receiver gets it like this:
double d;

recv(s, &d, sizeof d, 0); /* DANGER--non-portable! */

Fast, simple—what's not to like? Well, it turns out that not all architectures represent a double
(or int) for that matter with the same bit representation or even the same byte ordering! The code
is decidedly non-portable. (Hey—maybe you don't need portability, in which case this is nice and
fast.)

When packing integer types, we've already seen how the htons()-class of functions can help
keep things portable by transforming the numbers into Network Byte Order, and how that's the
Right Thing to do. Unfortunately, there are no similar functions for float types. Is all hope lost?

Fear not! (Were you afraid there for a second? No? Not even a little bit?) There is something
we can do: we can pack (or “marshal”, or “serialize”, or one of a thousand million other names) the
data into a known binary format that the receiver can unpack on the remote side.

What do I mean by “known binary format”? Well, we've already seen the htons() example,
right? It changes (or “encodes”, if you want to think of it that way) a number from whatever the
host format is into Network Byte Order. To reverse (unencode) the number, the receiver calls
ntohs().

But didn't I just get finished saying there wasn't any such function for other non-integer types?
Yes. I did. And since there's no standard way in C to do this, it's a bit of a pickle (that a gratuitous
pun there for you Python fans).

The thing to do is to pack the data into a known format and send that over the wire for
decoding. For example, to pack floats, here's something quick and dirty with plenty of room for
improvement: 20

#include <stdint.h>

uint32_t htonf(float f)
{
 uint32_t p;
 uint32_t sign;

 if (f < 0) { sign = 1; f = -f; }
 else { sign = 0; }

 p = ((((uint32_t)f)&0x7fff)<<16) | (sign<<31); // whole part and sign
 p |= (uint32_t)(((f - (int)f) * 65536.0f))&0xffff; // fraction

19. http://en.wikipedia.org/wiki/Internet_Relay_Chat
20. http://beej.us/guide/bgnet/examples/pack.c

http://en.wikipedia.org/wiki/Internet_Relay_Chat
http://beej.us/guide/bgnet/examples/pack.c
http://beej.us/guide/bgnet/examples/pack.c

Slightly Advanced Techniques 37

 return p;
}

float ntohf(uint32_t p)
{
 float f = ((p>>16)&0x7fff); // whole part
 f += (p&0xffff) / 65536.0f; // fraction

 if (((p>>31)&0x1) == 0x1) { f = -f; } // sign bit set

 return f;
}

The above code is sort of a naive implementation that stores a float in a 32-bit number. The
high bit (31) is used to store the sign of the number (“1” means negative), and the next seven bits
(30-16) are used to store the whole number portion of the float. Finally, the remaining bits (15-0)
are used to store the fractional portion of the number.

Usage is fairly straightforward:
#include <stdio.h>

int main(void)
{
 float f = 3.1415926, f2;
 uint32_t netf;

 netf = htonf(f); // convert to "network" form
 f2 = ntohf(netf); // convert back to test

 printf("Original: %f\n", f); // 3.141593
 printf(" Network: 0x%08X\n", netf); // 0x0003243F
 printf("Unpacked: %f\n", f2); // 3.141586

 return 0;
}

On the plus side, it's small, simple, and fast. On the minus side, it's not an efficient use of space
and the range is severely restricted—try storing a number greater-than 32767 in there and it won't
be very happy! You can also see in the above example that the last couple decimal places are not
correctly preserved.

What can we do instead? Well, The Standard for storing floating point numbers is known as
IEEE-754 21. Most computers use this format internally for doing floating point math, so in those
cases, strictly speaking, conversion wouldn't need to be done. But if you want your source code to
be portable, that's an assumption you can't necessarily make.

Here's some code that encodes floats and doubles into IEEE-754 format 22. (Mostly—it doesn't
encode NaN or Infinity, but it could be modified to do that.)
#define pack754_32(f) (pack754((f), 32, 8))
#define pack754_64(f) (pack754((f), 64, 11))
#define unpack754_32(i) (unpack754((i), 32, 8))
#define unpack754_64(i) (unpack754((i), 64, 11))

long long pack754(long double f, unsigned bits, unsigned expbits)
{
 long double fnorm;
 int shift;

21. http://en.wikipedia.org/wiki/IEEE_754
22. http://beej.us/guide/bgnet/examples/ieee754.c

http://en.wikipedia.org/wiki/IEEE_754
http://beej.us/guide/bgnet/examples/ieee754.c

38 Beej's Guide to Network Programming

 long long sign, exp, significand;
 unsigned significandbits = bits - expbits - 1; // -1 for sign bit

 if (f == 0.0) return 0; // get this special case out of the way

 // check sign and begin normalization
 if (f < 0) { sign = 1; fnorm = -f; }
 else { sign = 0; fnorm = f; }

 // get the normalized form of f and track the exponent
 shift = 0;
 while(fnorm >= 2.0) { fnorm /= 2.0; shift++; }
 while(fnorm < 1.0) { fnorm *= 2.0; shift--; }
 fnorm = fnorm - 1.0;

 // calculate the binary form (non-float) of the significand data
 significand = fnorm * ((1LL<<significandbits) + 0.5f);

 // get the biased exponent
 exp = shift + ((1<<(expbits-1)) - 1); // shift + bias

 // return the final answer
 return (sign<<(bits-1)) | (exp<<(bits-expbits-1)) | significand;
}

long double unpack754(long long i, unsigned bits, unsigned expbits)
{
 long double result;
 long long shift;
 unsigned bias;
 unsigned significandbits = bits - expbits - 1; // -1 for sign bit

 if (i == 0) return 0.0;

 // pull the significand
 result = (i&((1LL<<significandbits)-1)); // mask
 result /= (1LL<<significandbits); // convert back to float
 result += 1.0f; // add the one back on

 // deal with the exponent
 bias = (1<<(expbits-1)) - 1;
 shift = ((i>>significandbits)&((1LL<<expbits)-1)) - bias;
 while(shift > 0) { result *= 2.0; shift--; }
 while(shift < 0) { result /= 2.0; shift++; }

 // sign it
 result *= (i>>(bits-1))&1? -1.0: 1.0;

 return result;
}

I put some handy macros up there at the top for packing and unpacking 32-bit (probably a
float) and 64-bit (probably a double) numbers, but the pack754() function could be called
directly and told to encode bits-worth of data (expbits of which are reserved for the normalized
number's exponent.)

Here's sample usage:

#include <stdio.h>

Slightly Advanced Techniques 39

#include <stdint.h> // defines uintN_t types

int main(void)
{
 float f = 3.1415926, f2;
 double d = 3.14159265358979323, d2;
 uint32_t fi;
 uint64_t di;

 fi = pack754_32(f);
 f2 = unpack754_32(fi);

 di = pack754_64(d);
 d2 = unpack754_64(di);

 printf("float before : %.7f\n", f);
 printf("float encoded: 0x%08X\n", fi);
 printf("float after : %.7f\n\n", f2);

 printf("double before : %.20lf\n", d);
 printf("double encoded: 0x%016llX\n", di);
 printf("double after : %.20lf\n", d2);

 return 0;
}

The above code produces this output:
float before : 3.1415925
float encoded: 0x40490FDA
float after : 3.1415925

double before : 3.14159265358979311600
double encoded: 0x400921FB54442D18
double after : 3.14159265358979311600

Another question you might have is how do you pack structs? Unfortunately for you, the
compiler is free to put padding all over the place in a struct, and that means you can't portably
send the whole thing over the wire in one chunk. (Aren't you getting sick of hearing “can't do
this”, “can't do that”? Sorry! To quote a friend, “Whenever anything goes wrong, I always blame
Microsoft.” This one might not be Microsoft's fault, admittedly, but my friend's statement is
completely true.)

Back to it: the best way to send the struct over the wire is to pack each field independently
and then unpack them into the struct when they arrive on the other side.

That's a lot of work, is what you're thinking. Yes, it is. One thing you can do is write a helper
function to help pack the data for you. It'll be fun! Really!

In the book “The Practice of Programming 23” by Kernighan and Pike, they implement
printf()-like functions called pack() and unpack() that do exactly this. I'd link to them, but
apparently those functions aren't online with the rest of the source from the book.

(The Practice of Programming is an excellent read. Zeus saves a kitten every time I
recommend it.)

At this point, I'm going to drop a pointer to the BSD-licensed Typed Parameter Language C
API 24 which I've never used, but looks completely respectable. Python and Perl programmers will

23. http://cm.bell-labs.com/cm/cs/tpop/
24. http://tpl.sourceforge.net/

http://cm.bell-labs.com/cm/cs/tpop/
http://tpl.sourceforge.net/
http://tpl.sourceforge.net/

40 Beej's Guide to Network Programming

want to check out their language's pack() and unpack() functions for accomplishing the same
thing. And Java has a big-ol' Serializable interface that can be used in a similar way.

But if you want to write your own packing utility in C, K&P's trick is to use variable argument
lists to make printf()-like functions to build the packets. Here's a version I cooked up 25 on my
own based on that which hopefully will be enough to give you an idea of how such a thing can
work.

(This code references the pack754() functions, above. The packi*() functions operate like
the familiar htons() family, except they pack into a char array instead of another integer.)
#include <ctype.h>
#include <stdarg.h>
#include <string.h>

/*
** packi16() -- store a 16-bit int into a char buffer (like htons())
*/
void packi16(unsigned char *buf, unsigned int i)
{
 *buf++ = i>>8; *buf++ = i;
}

/*
** packi32() -- store a 32-bit int into a char buffer (like htonl())
*/
void packi32(unsigned char *buf, unsigned long i)
{
 *buf++ = i>>24; *buf++ = i>>16;
 *buf++ = i>>8; *buf++ = i;
}

/*
** unpacki16() -- unpack a 16-bit int from a char buffer (like ntohs())
*/
unsigned int unpacki16(unsigned char *buf)
{
 return (buf[0]<<8) | buf[1];
}

/*
** unpacki32() -- unpack a 32-bit int from a char buffer (like ntohl())
*/
unsigned long unpacki32(unsigned char *buf)
{
 return (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
}

/*
** pack() -- store data dictated by the format string in the buffer
**
** h - 16-bit l - 32-bit
** c - 8-bit char f - float, 32-bit
** s - string (16-bit length is automatically prepended)
*/
size_t pack(unsigned char *buf, char *format, ...)
{
 va_list ap;
 int h;

25. http://beej.us/guide/bgnet/examples/pack2.c

http://beej.us/guide/bgnet/examples/pack2.c

Slightly Advanced Techniques 41

 int l;
 char c;
 float f;
 char *s;
 size_t size = 0, len;

 va_start(ap, format);

 for(; *format != '\0'; format++) {
 switch(*format) {
 case 'h': // 16-bit
 size += 2;
 h = va_arg(ap, int); // promoted
 packi16(buf, h);
 buf += 2;
 break;

 case 'l': // 32-bit
 size += 4;
 l = va_arg(ap, int);
 packi32(buf, l);
 buf += 4;
 break;

 case 'c': // 8-bit
 size += 1;
 c = va_arg(ap, int); // promoted
 *buf++ = (c>>0)&0xff;
 break;

 case 'f': // float
 size += 4;
 f = va_arg(ap, double); // promoted
 l = pack754_32(f); // convert to IEEE 754
 packi32(buf, l);
 buf += 4;
 break;

 case 's': // string
 s = va_arg(ap, char*);
 len = strlen(s);
 size += len + 2;
 packi16(buf, len);
 buf += 2;
 memcpy(buf, s, len);
 buf += len;
 break;
 }
 }

 va_end(ap);

 return size;
}

/*
** unpack() -- unpack data dictated by the format string into the buffer
*/
void unpack(unsigned char *buf, char *format, ...)
{

42 Beej's Guide to Network Programming

 va_list ap;
 short *h;
 int *l;
 int pf;
 char *c;
 float *f;
 char *s;
 size_t len, count, maxstrlen=0;

 va_start(ap, format);

 for(; *format != '\0'; format++) {
 switch(*format) {
 case 'h': // 16-bit
 h = va_arg(ap, short*);
 *h = unpacki16(buf);
 buf += 2;
 break;

 case 'l': // 32-bit
 l = va_arg(ap, int*);
 *l = unpacki32(buf);
 buf += 4;
 break;

 case 'c': // 8-bit
 c = va_arg(ap, char*);
 *c = *buf++;
 break;

 case 'f': // float
 f = va_arg(ap, float*);
 pf = unpacki32(buf);
 buf += 4;
 *f = unpack754_32(pf);
 break;

 case 's': // string
 s = va_arg(ap, char*);
 len = unpacki16(buf);
 buf += 2;
 if (maxstrlen > 0 && len > maxstrlen) count = maxstrlen - 1;
 else count = len;
 memcpy(s, buf, count);
 s[count] = '\0';
 buf += len;
 break;

 default:
 if (isdigit(*format)) { // track max str len
 maxstrlen = maxstrlen * 10 + (*format-'0');
 }
 }

 if (!isdigit(*format)) maxstrlen = 0;
 }

 va_end(ap);
}

Slightly Advanced Techniques 43

And here is a demonstration program 26 of the above code that packs some data into buf and
then unpacks it into variables. Note that when calling unpack() with a string argument (format
specifier “s”), it's wise to put a maximum length count in front of it to prevent a buffer overrun,
e.g. “96s”. Be wary when unpacking data you get over the network—a malicious user might send
badly-constructed packets in an effort to attack your system!
#include <stdio.h>

int main(void)
{
 unsigned char buf[1024];
 char magic;
 short monkeycount;
 long altitude;
 float absurdityfactor;
 char *s = "Great unmitigated Zot! You've found the Runestaff!";
 char s2[96];
 size_t packetsize, ps2;

 packetsize = pack(buf, "chhlsf", 'B', 0, 37, -5, s, -3490.6677);
 packi16(buf+1, packetsize); // store packet size in packet for kicks

 printf("packet is %d bytes\n", packetsize);

 unpack(buf, "chhl96sf", &magic, &ps2, &monkeycount, &altitude, s2,
 &absurdityfactor);

 printf("'%c' %d %d %ld \"%s\" %f\n", magic, ps2, monkeycount, altitude,
 s2, absurdityfactor);

 return 0;
}

Whether you roll your own code or use someone else's, it's a good idea to have a general set of
data packing routines for the sake of keeping bugs in check, rather than packing each bit by hand
each time.

When packing the data, what's a good format to use? Excellent question. Fortunately, RFC
4506 27, the External Data Representation Standard, already defines binary formats for a bunch of
different types, like floating point types, integer types, arrays, raw data, etc. I suggest conforming to
that if you're going to roll the data yourself. But you're not obligated to. The Packet Police are not
right outside your door. At least, I don't think they are.

In any case, encoding the data somehow or another before you send it is the right way of doing
things!

6.5. Son of Data Encapsulation
What does it really mean to encapsulate data, anyway? In the simplest case, it means you'll

stick a header on there with either some identifying information or a packet length, or both.
What should your header look like? Well, it's just some binary data that represents whatever

you feel is necessary to complete your project.
Wow. That's vague.

26. http://beej.us/guide/bgnet/examples/pack2.c
27. http://tools.ietf.org/html/rfc4506

http://beej.us/guide/bgnet/examples/pack2.c
http://tools.ietf.org/html/rfc4506
http://tools.ietf.org/html/rfc4506

44 Beej's Guide to Network Programming

Okay. For instance, let's say you have a multi-user chat program that uses SOCK_STREAMs.
When a user types (“says”) something, two pieces of information need to be transmitted to the
server: what was said and who said it.

So far so good? “What's the problem?” you're asking.
The problem is that the messages can be of varying lengths. One person named “tom” might

say, “Hi”, and another person named “Benjamin” might say, “Hey guys what is up?”
So you send() all this stuff to the clients as it comes in. Your outgoing data stream looks like

this:
t o m H i B e n j a m i n H e y g u y s w h a t i s u p ?

And so on. How does the client know when one message starts and another stops? You could,
if you wanted, make all messages the same length and just call the sendall() we implemented,
above. But that wastes bandwidth! We don't want to send() 1024 bytes just so “tom” can say “Hi”.

So we encapsulate the data in a tiny header and packet structure. Both the client and server
know how to pack and unpack (sometimes referred to as “marshal” and “unmarshal”) this data.
Don't look now, but we're starting to define a protocol that describes how a client and server
communicate!

In this case, let's assume the user name is a fixed length of 8 characters, padded with '\0'.
And then let's assume the data is variable length, up to a maximum of 128 characters. Let's have a
look a sample packet structure that we might use in this situation:

1. len (1 byte, unsigned)—The total length of the packet, counting the 8-byte user name and
chat data.

2. name (8 bytes)—The user's name, NUL-padded if necessary.

3. chatdata (n-bytes)—The data itself, no more than 128 bytes. The length of the packet
should be calculated as the length of this data plus 8 (the length of the name field, above).

Why did I choose the 8-byte and 128-byte limits for the fields? I pulled them out of the air,
assuming they'd be long enough. Maybe, though, 8 bytes is too restrictive for your needs, and you
can have a 30-byte name field, or whatever. The choice is up to you.

Using the above packet definition, the first packet would consist of the following information
(in hex and ASCII):
 0A 74 6F 6D 00 00 00 00 00 48 69
(length) T o m (padding) H i

And the second is similar:
 18 42 65 6E 6A 61 6D 69 6E 48 65 79 20 67 75 79 73 20 77 ...
(length) B e n j a m i n H e y g u y s w ...

(The length is stored in Network Byte Order, of course. In this case, it's only one byte so it
doesn't matter, but generally speaking you'll want all your binary integers to be stored in Network
Byte Order in your packets.)

When you're sending this data, you should be safe and use a command similar to sendall(),
above, so you know all the data is sent, even if it takes multiple calls to send() to get it all out.

Likewise, when you're receiving this data, you need to do a bit of extra work. To be safe, you
should assume that you might receive a partial packet (like maybe we receive “18 42 65 6E 6A”

Slightly Advanced Techniques 45

from Benjamin, above, but that's all we get in this call to recv()). We need to call recv() over
and over again until the packet is completely received.

But how? Well, we know the number of bytes we need to receive in total for the packet to
be complete, since that number is tacked on the front of the packet. We also know the maximum
packet size is 1+8+128, or 137 bytes (because that's how we defined the packet.)

There are actually a couple things you can do here. Since you know every packet starts off
with a length, you can call recv() just to get the packet length. Then once you have that, you can
call it again specifying exactly the remaining length of the packet (possibly repeatedly to get all
the data) until you have the complete packet. The advantage of this method is that you only need a
buffer large enough for one packet, while the disadvantage is that you need to call recv() at least
twice to get all the data.

Another option is just to call recv() and say the amount you're willing to receive is the
maximum number of bytes in a packet. Then whatever you get, stick it onto the back of a buffer,
and finally check to see if the packet is complete. Of course, you might get some of the next packet,
so you'll need to have room for that.

What you can do is declare an array big enough for two packets. This is your work array where
you will reconstruct packets as they arrive.

Every time you recv() data, you'll append it into the work buffer and check to see if the
packet is complete. That is, the number of bytes in the buffer is greater than or equal to the length
specified in the header (+1, because the length in the header doesn't include the byte for the length
itself.) If the number of bytes in the buffer is less than 1, the packet is not complete, obviously. You
have to make a special case for this, though, since the first byte is garbage and you can't rely on it
for the correct packet length.

Once the packet is complete, you can do with it what you will. Use it, and remove it from your
work buffer.

Whew! Are you juggling that in your head yet? Well, here's the second of the one-two punch:
you might have read past the end of one packet and onto the next in a single recv() call. That
is, you have a work buffer with one complete packet, and an incomplete part of the next packet!
Bloody heck. (But this is why you made your work buffer large enough to hold two packets—in
case this happened!)

Since you know the length of the first packet from the header, and you've been keeping track
of the number of bytes in the work buffer, you can subtract and calculate how many of the bytes
in the work buffer belong to the second (incomplete) packet. When you've handled the first one,
you can clear it out of the work buffer and move the partial second packet down the to front of the
buffer so it's all ready to go for the next recv().

(Some of you readers will note that actually moving the partial second packet to the beginning
of the work buffer takes time, and the program can be coded to not require this by using a circular
buffer. Unfortunately for the rest of you, a discussion on circular buffers is beyond the scope of this
article. If you're still curious, grab a data structures book and go from there.)

I never said it was easy. Ok, I did say it was easy. And it is; you just need practice and pretty
soon it'll come to you naturally. By Excalibur I swear it!

6.6. Broadcast Packets—Hello, World!
So far, this guide has talked about sending data from one host to one other host. But it is

possible, I insist, that you can, with the proper authority, send data to multiple hosts at the same
time!

46 Beej's Guide to Network Programming

With UDP (only UDP, not TCP) and standard IPv4, this is done through a mechanism called
broadcasting. With IPv6 (not appearing in this guide...yet), broadcasting isn't supported, and
you have to resort to the often superior technique of multicasting. But enough of the starry-eyed
future—we're stuck in the 32-bit present.

But wait! You can't just run off and start broadcasting willy-nilly; You have to set the socket
option SO_BROADCAST before you can send a broadcast packet out on the network. It's like a one of
those little plastic covers they put over the missile launch switch! That's just how much power you
hold in your hands!

But seriously, though, there is a danger to using broadcast packets, and that is: every system
that receives a broadcast packet must undo all the onion-skin layers of data encapsulation until it
finds out what port the data is destined to. And then it hands the data over or discards it. In either
case, it's a lot of work for each machine that receives the broadcast packet, and since it is all of them
on the local network, that could be a lot of machines doing a lot of unnecessary work. When the
game Doom first came out, this was a complaint about its network code.

Yes, I said the local network. There is more than one way to skin a cat... wait a minute. Is there
really more than one way to skin a cat? What kind of expression is that? Uh, and likewise, there is
more than one way to send a broadcast packet, but the broadcast packets will usually be restricted to
your local network no matter how you send them.

So now to the meat and potatoes of the whole thing: how do you specify the destination
address for a broadcast message? There are two common ways.

1. Send the data to your broadcast address. This is your network number with all one-bits
set for the host portion of the address. For instance, at home my network is 192.168.1.0,
my netmask is 255.255.255.0, so the last byte of the address is my host number (because
the first three bytes, according to the netmask, are the network number). So my broadcast
address is 192.168.1.255. Under Unix, the ifconfig command will actually give you
all this data. (If you're curious, the bitwise logic to get your broadcast address is
network_number OR (NOT netmask).)

2. Send the data to the “global” broadcast address. This is 255.255.255.255, aka
INADDR_BROADCAST. Many machines will automatically bitwise AND this with your
network number to convert it to a network broadcast address, but some won't. It varies.

So what happens if you try to send data on the broadcast address without first setting the
SO_BROADCAST socket option? Well, let's fire up good old talker and listener and see what
happens.
$ talker 192.168.1.2 foo
sent 3 bytes to 192.168.1.2
$ talker 192.168.1.255 foo
sendto: Permission denied
$ talker 255.255.255.255 foo
sendto: Permission denied

Yes, it's not happy at all...because we didn't set the SO_BROADCAST socket option. Do that, and
now you can sendto() anywhere you want!

In fact, that's the only difference between a UDP application that can broadcast and one that
can't. So let's take the old talker application and add one section that sets the SO_BROADCAST
socket option. We'll call this program broadcaster.c 28:

28. http://beej.us/guide/bgnet/examples/broadcaster.c

http://beej.us/guide/bgnet/examples/broadcaster.c

Slightly Advanced Techniques 47

/*
** broadcaster.c -- a datagram "client" like talker.c, except
** this one can broadcast
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

#define SERVERPORT 4950 // the port users will be connecting to

int main(int argc, char *argv[])
{
 int sockfd;
 struct sockaddr_in their_addr; // connector's address information
 struct hostent *he;
 int numbytes;
 int broadcast = 1;
 //char broadcast = '1'; // if that doesn't work, try this

 if (argc != 3) {
 fprintf(stderr,"usage: broadcaster hostname message\n");
 exit(1);
 }

 if ((he=gethostbyname(argv[1])) == NULL) { // get the host info
 herror("gethostbyname");
 exit(1);
 }

 if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) == -1) {
 perror("socket");
 exit(1);
 }

 // this call is the difference between this program and talker.c:
 if (setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, &broadcast,
 sizeof broadcast) == -1) {
 perror("setsockopt (SO_BROADCAST)");
 exit(1);
 }

 their_addr.sin_family = AF_INET; // host byte order
 their_addr.sin_port = htons(SERVERPORT); // short, network byte order
 their_addr.sin_addr = *((struct in_addr *)he->h_addr);
 memset(their_addr.sin_zero, '\0', sizeof their_addr.sin_zero);

 if ((numbytes=sendto(sockfd, argv[2], strlen(argv[2]), 0,
 (struct sockaddr *)&their_addr, sizeof their_addr)) == -1) {
 perror("sendto");
 exit(1);
 }

48 Beej's Guide to Network Programming

 printf("sent %d bytes to %s\n", numbytes, inet_ntoa(their_addr.sin_addr));

 close(sockfd);

 return 0;
}

What's different between this and a “normal” UDP client/server situation? Nothing! (With the
exception of the client being allowed to send broadcast packets in this case.) As such, go ahead and
run the old UDP listener program in one window, and broadcaster in another. You should be now
be able to do all those sends that failed, above.

$ talker 192.168.1.2 foo
sent 3 bytes to 192.168.1.2
$ talker 192.168.1.255 foo
sent 3 bytes to 192.168.1.255
$ talker 255.255.255.255 foo
sent 3 bytes to 255.255.255.255

And you should see listener responding that it got the packets.
Well, that's kind of exciting. But now fire up listener on another machine next to you on the

same network so that you have two copies going, one on each machine, and run broadcaster again
with your broadcast address... Hey! Both listeners get the packet even though you only called
sendto() once! Cool!

If the listener gets data you send directly to it, but not data on the broadcast address, it could
be that you have a firewall on your local machine that is blocking the packets. (Yes, Pat and Bapper,
thank you for realizing before I did that this is why my sample code wasn't working. I told you I'd
mention you in the guide, and here you are. So nyah.)

Again, be careful with broadcast packets. Since every machine on the LAN will be forced
to deal with the packet whether it recvfrom()s it or not, it can present quite a load to the entire
computing network. They are definitely to be used sparingly and appropriately.

49

7. Common Questions

Where can I get those header files?

If you don't have them on your system already, you probably don't need them. Check the
manual for your particular platform. If you're building for Windows, you only need to #include
<winsock.h>.

What do I do when bind() reports “Address already in use”?

You have to use setsockopt() with the SO_REUSEADDR option on the listening socket.
Check out the section on bind() and the section on select() for an example.

How do I get a list of open sockets on the system?

Use the netstat. Check the man page for full details, but you should get some good output just
typing:
$ netstat

The only trick is determining which socket is associated with which program. :-)

How can I view the routing table?

Run the route command (in /sbin on most Linuxes) or the command netstat -r.

How can I run the client and server programs if I only have one computer? Don't I need a
network to write network programs?

Fortunately for you, virtually all machines implement a loopback network “device” that sits
in the kernel and pretends to be a network card. (This is the interface listed as “lo” in the routing
table.)

Pretend you're logged into a machine named “goat”. Run the client in one window and the
server in another. Or start the server in the background (“server &”) and run the client in the same
window. The upshot of the loopback device is that you can either client goat or client localhost
(since “localhost” is likely defined in your /etc/hosts file) and you'll have the client talking to
the server without a network!

In short, no changes are necessary to any of the code to make it run on a single non-networked
machine! Huzzah!

How can I tell if the remote side has closed connection?

You can tell because recv() will return 0.

How do I implement a “ping” utility? What is ICMP? Where can I find out more about raw
sockets and SOCK_RAW?

All your raw sockets questions will be answered in W. Richard Stevens' UNIX Network
Programming books. See the books section of this guide.

50 Beej's Guide to Network Programming

How do I build for Windows?

First, delete Windows and install Linux or BSD. };-). No, actually, just see the section on
building for Windows in the introduction.

How do I build for Solaris/SunOS? I keep getting linker errors when I try to compile!

The linker errors happen because Sun boxes don't automatically compile in the socket libraries.
See the section on building for Solaris/SunOS in the introduction for an example of how to do this.

Why does select() keep falling out on a signal?

Signals tend to cause blocked system calls to return -1 with errno set to EINTR. When you
set up a signal handler with sigaction(), you can set the flag SA_RESTART, which is supposed to
restart the system call after it was interrupted.

Naturally, this doesn't always work.
My favorite solution to this involves a goto statement. You know this irritates your professors

to no end, so go for it!
select_restart:
if ((err = select(fdmax+1, &readfds, NULL, NULL, NULL)) == -1) {
 if (errno == EINTR) {
 // some signal just interrupted us, so restart
 goto select_restart;
 }
 // handle the real error here:
 perror("select");
}

Sure, you don't need to use goto in this case; you can use other structures to control it. But I
think the goto statement is actually cleaner.

How can I implement a timeout on a call to recv()?

Use select()! It allows you to specify a timeout parameter for socket descriptors that you're
looking to read from. Or, you could wrap the entire functionality in a single function, like this:
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>

int recvtimeout(int s, char *buf, int len, int timeout)
{
 fd_set fds;
 int n;
 struct timeval tv;

 // set up the file descriptor set
 FD_ZERO(&fds);
 FD_SET(s, &fds);

 // set up the struct timeval for the timeout
 tv.tv_sec = timeout;
 tv.tv_usec = 0;

 // wait until timeout or data received
 n = select(s+1, &fds, NULL, NULL, &tv);

Common Questions 51

 if (n == 0) return -2; // timeout!
 if (n == -1) return -1; // error

 // data must be here, so do a normal recv()
 return recv(s, buf, len, 0);
}
.
.
.
// Sample call to recvtimeout():
n = recvtimeout(s, buf, sizeof buf, 10); // 10 second timeout

if (n == -1) {
 // error occurred
 perror("recvtimeout");
}
else if (n == -2) {
 // timeout occurred
} else {
 // got some data in buf
}
.
.
.

Notice that recvtimeout() returns -2 in case of a timeout. Why not return 0? Well, if you
recall, a return value of 0 on a call to recv() means that the remote side closed the connection. So
that return value is already spoken for, and -1 means “error”, so I chose -2 as my timeout indicator.

How do I encrypt or compress the data before sending it through the socket?

One easy way to do encryption is to use SSL (secure sockets layer), but that's beyond the scope
of this guide. (Check out the OpenSSL project 29 for more info.)

But assuming you want to plug in or implement your own compressor or encryption system,
it's just a matter of thinking of your data as running through a sequence of steps between both ends.
Each step changes the data in some way.

1. server reads data from file (or wherever)

2. server encrypts/compresses data (you add this part)

3. server send()s encrypted data

Now the other way around:

1. client recv()s encrypted data

2. client decrypts/decompresses data (you add this part)

3. client writes data to file (or wherever)

If you're going to compress and encrypt, just remember to compress first. :-)
Just as long as the client properly undoes what the server does, the data will be fine in the end

no matter how many intermediate steps you add.

29. http://www.openssl.org/

http://www.openssl.org/

52 Beej's Guide to Network Programming

So all you need to do to use my code is to find the place between where the data is read and the
data is sent (using send()) over the network, and stick some code in there that does the encryption.

What is this “PF_INET” I keep seeing? Is it related to AF_INET?

Yes, yes it is. See the section on socket() for details.

How can I write a server that accepts shell commands from a client and executes them?

For simplicity, lets say the client connect()s, send()s, and close()s the connection (that
is, there are no subsequent system calls without the client connecting again.)

The process the client follows is this:

1. connect() to server

2. send(“/sbin/ls > /tmp/client.out”)

3. close() the connection

Meanwhile, the server is handling the data and executing it:

1. accept() the connection from the client

2. recv(str) the command string

3. close() the connection

4. system(str) to run the command

Beware! Having the server execute what the client says is like giving remote shell access and
people can do things to your account when they connect to the server. For instance, in the above
example, what if the client sends “rm -rf ~”? It deletes everything in your account, that's what!

So you get wise, and you prevent the client from using any except for a couple utilities that you
know are safe, like the foobar utility:
if (!strncmp(str, "foobar", 6)) {
 sprintf(sysstr, "%s > /tmp/server.out", str);
 system(sysstr);
}

But you're still unsafe, unfortunately: what if the client enters “foobar; rm -rf ~”? The
safest thing to do is to write a little routine that puts an escape (“\”) character in front of all
non-alphanumeric characters (including spaces, if appropriate) in the arguments for the command.

As you can see, security is a pretty big issue when the server starts executing things the client
sends.

I'm sending a slew of data, but when I recv(), it only receives 536 bytes or 1460 bytes at
a time. But if I run it on my local machine, it receives all the data at the same time. What's
going on?

You're hitting the MTU—the maximum size the physical medium can handle. On the local
machine, you're using the loopback device which can handle 8K or more no problem. But on
Ethernet, which can only handle 1500 bytes with a header, you hit that limit. Over a modem, with
576 MTU (again, with header), you hit the even lower limit.

Common Questions 53

You have to make sure all the data is being sent, first of all. (See the sendall() function
implementation for details.) Once you're sure of that, then you need to call recv() in a loop until
all your data is read.

Read the section Son of Data Encapsulation for details on receiving complete packets of data
using multiple calls to recv().

I'm on a Windows box and I don't have the fork() system call or any kind of struct
sigaction. What to do?

If they're anywhere, they'll be in POSIX libraries that may have shipped with your compiler.
Since I don't have a Windows box, I really can't tell you the answer, but I seem to remember that
Microsoft has a POSIX compatibility layer and that's where fork() would be. (And maybe even
sigaction.)

Search the help that came with VC++ for “fork” or “POSIX” and see if it gives you any clues.
If that doesn't work at all, ditch the fork()/sigaction stuff and replace it with the Win32

equivalent: CreateProcess(). I don't know how to use CreateProcess()—it takes a bazillion
arguments, but it should be covered in the docs that came with VC++.

I'm behind a firewall—how do I let people outside the firewall know my IP address so they
can connect to my machine?

Unfortunately, the purpose of a firewall is to prevent people outside the firewall from
connecting to machines inside the firewall, so allowing them to do so is basically considered a
breach of security.

This isn't to say that all is lost. For one thing, you can still often connect() through the
firewall if it's doing some kind of masquerading or NAT or something like that. Just design your
programs so that you're always the one initiating the connection, and you'll be fine.

If that's not satisfactory, you can ask your sysadmins to poke a hole in the firewall so that
people can connect to you. The firewall can forward to you either through it's NAT software, or
through a proxy or something like that.

Be aware that a hole in the firewall is nothing to be taken lightly. You have to make sure you
don't give bad people access to the internal network; if you're a beginner, it's a lot harder to make
software secure than you might imagine.

Don't make your sysadmin mad at me. ;-)

How do I write a packet sniffer? How do I put my Ethernet interface into promiscuous mode?

For those not in the know, when a network card is in “promiscuous mode”, it will forward
ALL packets to the operating system, not just those that were addressed to this particular machine.
(We're talking Ethernet-layer addresses here, not IP addresses--but since ethernet is lower-layer
than IP, all IP addresses are effectively forwarded as well. See the section Low Level Nonsense and
Network Theory for more info.)

This is the basis for how a packet sniffer works. It puts the interface into promiscuous mode,
then the OS gets every single packet that goes by on the wire. You'll have a socket of some type that
you can read this data from.

Unfortunately, the answer to the question varies depending on the platform, but if you Google
for, for instance, “windows promiscuous ioctl” you'll probably get somewhere. There's what looks
like a decent writeup in Linux Journal 30, as well.

30. http://interactive.linuxjournal.com/article/4659

http://interactive.linuxjournal.com/article/4659

54 Beej's Guide to Network Programming

How can I set a custom timeout value for a TCP or UDP socket?

It depends on your system. You might search the net for SO_RCVTIMEO and SO_SNDTIMEO
(for use with setsockopt()) to see if your system supports such functionality.

The Linux man page suggests using alarm() or setitimer() as a substitute.

How can I tell which ports are available to use? Is there a list of “official” port numbers?

Usually this isn't an issue. If you're writing, say, a web server, then it's a good idea to use
the well-known port 80 for your software. If you're writing just your own specialized server, then
choose a port at random (but greater than 1023) and give it a try.

If the port is already in use, you'll get an “Address already in use” error when you try to
bind(). Choose another port. (It's a good idea to allow the user of your software to specify an
alternate port either with a config file or a command line switch.)

There is a list of official port numbers 31 maintained by the Internet Assigned Numbers
Authority (IANA). Just because something (over 1023) is in that list doesn't mean you can't use the
port. For instance, Id Software's DOOM uses the same port as “mdqs”, whatever that is. All that
matters is that no one else on the same machine is using that port when you want to use it.

31. http://www.iana.org/assignments/port-numbers

http://www.iana.org/assignments/port-numbers

55

8. Man Pages

In the Unix world, there are a lot of manuals. They have little sections that describe individual
functions that you have at your disposal.

Of course, manual would be too much of a thing to type. I mean, no one in the Unix world,
including myself, likes to type that much. Indeed I could go on and on at great length about how
much I prefer to be terse but instead I shall be brief and not bore you with long-winded diatribes
about how utterly amazingly brief I prefer to be in virtually all circumstances in their entirety.

[Applause]
Thank you. What I am getting at is that these pages are called “man pages” in the Unix world,

and I have included my own personal truncated variant here for your reading enjoyment. The thing
is, many of these functions are way more general purpose than I'm letting on, but I'm only going to
present the parts that are relevant for Internet Sockets Programming.

But wait! That's not all that's wrong with my man pages:

• They are incomplete and only show the basics from the guide.

• There are many more man pages than this in the real world.

• They are different than the ones on your system.

• The header files might be different for certain functions on your system.

• The function parameters might be different for certain functions on your system.

If you want the real information, check your local Unix man pages by typing man whatever,
where “whatever” is something that you're incredibly interested in, such as “accept”. (I'm sure
Microsoft Visual Studio has something similar in their help section. But “man” is better because it
is one byte more concise than “help”. Unix wins again!)

So, if these are so flawed, why even include them at all in the Guide? Well, there are a few
reasons, but the best are that (a) these versions are geared specifically toward network programming
and are easier to digest than the real ones, and (b) these versions contain examples!

Oh! And speaking of the examples, I don't tend to put in all the error checking because it really
increases the length of the code. But you should absolutely do error checking pretty much any time
you make any of the system calls unless you're totally 100% sure it's not going to fail, and you
should probably do it even then!

56 Beej's Guide to Network Programming

8.1. accept()

Accept an incoming connection on a listening socket

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

int accept(int s, struct sockaddr *addr, socklen_t *addrlen);

Description
Once you've gone through the trouble of getting a SOCK_STREAM socket and setting it up for

incoming connections with listen(), then you call accept() to actually get yourself a new
socket descriptor to use for subsequent communication with the newly connected client.

The old socket that you are using for listening is still there, and will be used for further
accept() calls as they come in.

s The listen()ing socket descriptor.

addr This is filled in with the address of the site that's connecting to you.

addrlen This is filled in with the sizeof() the structure returned in the addr
parameter. You can safely ignore it if you assume you're getting a struct
sockaddr_in back, which you know you are, because that's the type you
passed in for addr.

accept() will normally block, and you can use select() to peek on the listening socket
descriptor ahead of time to see if it's “ready to read”. If so, then there's a new connection waiting
to be accept()ed! Yay! Alternatively, you could set the O_NONBLOCK flag on the listening socket
using fcntl(), and then it will never block, choosing instead to return -1 with errno set to
EWOULDBLOCK.

The socket descriptor returned by accept() is a bona fide socket descriptor, open and
connected to the remote host. You have to close() it when you're done with it.

Return Value
accept() returns the newly connected socket descriptor, or -1 on error, with errno set

appropriately.

Example
int s, s2;
struct sockaddr_in myaddr, remoteaddr;
socklen_t remoteaddr_len;

myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(3490); // clients connect to this port
myaddr.sin_addr.s_addr = INADDR_ANY; // autoselect IP address

s = socket(PF_INET, SOCK_STREAM, 0);
bind(s, (struct sockaddr*)myaddr, sizeof myaddr);

listen(s, 10); // set s up to be a server (listening) socket

Man Pages 57

for(;;) {
 s2 = accept(s, &remoteaddr, &remoteaddr_len);

 // now you can send() and recv() with the
 // connected client via socket s2
}

See Also
socket(), listen(), struct sockaddr_in

58 Beej's Guide to Network Programming

8.2. bind()

Associate a socket with an IP address and port number

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

int bind(int sockfd, struct sockaddr *my_addr, socklen_t addrlen);

Description
When a remote machine wants to connect to your server program, it needs two pieces of

information: the IP address and the port number. The bind() call allows you to do just that.
First, you call socket() to get a socket descriptor, and then you load up a struct

sockaddr_in with the IP address and port number information, and then you pass both of those
into bind(), and the IP address and port are magically (using actual magic) bound to the socket!

If you don't know your IP address, or you know you only have one IP address on the machine,
or you don't care which of the machine's IP addresses is used, you can simply set the s_addr field
in your struct sockaddr_in to INADDR_ANY and it will fill in the IP address for you.

Lastly, the addrlen parameter should be set to sizeof my_addr.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
struct sockaddr_in myaddr;
int s;

myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(3490);

// you can specify an IP address:
inet_aton("63.161.169.137", &myaddr.sin_addr.s_addr);

// or you can let it automatically select one:
myaddr.sin_addr.s_addr = INADDR_ANY;

s = socket(PF_INET, SOCK_STREAM, 0);
bind(s, (struct sockaddr*)myaddr, sizeof myaddr);

See Also
socket(), struct sockaddr_in, struct in_addr

Man Pages 59

8.3. connect()

Connect a socket to a server

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *serv_addr,
 socklen_t addrlen);

Description
Once you've built a socket descriptor with the socket() call, you can connect() that socket

to a remote server using the well-named connect() system call. All you need to do is pass it the
socket descriptor and the address of the server you're interested in getting to know better. (Oh, and
the length of the address, which is commonly passed to functions like this.)

If you haven't yet called bind() on the socket descriptor, it is automatically bound to your
IP address and a random local port. This is usually just fine with you, since you really don't care
what your local port is; you only care what the remote port is so you can put it in the serv_addr
parameter. You can call bind() if you really want your client socket to be on a specific IP address
and port, but this is pretty rare.

Once the socket is connect()ed, you're free to send() and recv() data on it to your heart's
content.

Special note: if you connect() a SOCK_DGRAM UDP socket to a remote host, you can use
send() and recv() as well as sendto() and recvfrom(). If you want.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
int s;
struct sockaddr_in serv_addr;

// pretend the server is at 63.161.169.137 listening on port 80:

myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(80);
inet_aton("63.161.169.137", &myaddr.sin_addr.s_addr);

s = socket(PF_INET, SOCK_STREAM, 0);
connect(s, (struct sockaddr*)myaddr, sizeof myaddr);

// now we're ready to send() and recv()

See Also
socket(), bind()

60 Beej's Guide to Network Programming

8.4. close()

Close a socket descriptor

Prototypes
#include <unistd.h>

int close(int s);

Description
After you've finished using the socket for whatever demented scheme you have concocted and

you don't want to send() or recv() or, indeed, do anything else at all with the socket, you can
close() it, and it'll be freed up, never to be used again.

The remote side can tell if this happens one of two ways. One: if the remote side calls recv(),
it will return 0. Two: if the remote side calls send(), it'll receive a signal SIGPIPE and send() will
return -1 and errno will be set to EPIPE.

Windows users: the function you need to use is called closesocket(), not close(). If you
try to use close() on a socket descriptor, it's possible Windows will get angry... And you wouldn't
like it when it's angry.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
s = socket(PF_INET, SOCK_DGRAM, 0);
.
.
.
// a whole lotta stuff...*BRRRONNNN!*
.
.
.
close(s); // not much to it, really.

See Also
socket(), shutdown()

Man Pages 61

8.5. gethostname()

Returns the name of the system

Prototypes
#include <sys/unistd.h>

int gethostname(char *name, size_t len);

Description
Your system has a name. They all do. This is a slightly more Unixy thing than the rest of the

networky stuff we've been talking about, but it still has its uses.
For instance, you can get your host name, and then call gethostbyname() to find out your IP

address.
The parameter name should point to a buffer that will hold the host name, and len is the size

of that buffer in bytes. gethostname() won't overwrite the end of the buffer (it might return an
error, or it might just stop writing), and it will NUL-terminate the string if there's room for it in the
buffer.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
char hostname[128];

gethostname(hostname, sizeof hostname);
printf("My hostname: %s\n", hostname);

See Also
gethostbyname()

62 Beej's Guide to Network Programming

8.6. gethostbyname(), gethostbyaddr()

Get an IP address for a hostname, or vice-versa

Prototypes
#include <sys/socket.h>
#include <netdb.h>

struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyaddr(const char *addr, int len, int type);

Description
These functions map back and forth between host names and IP addresses. After all, you want

an IP address to pass to connect(), right? But no one wants to remember an IP address. So you let
your users type in things like “www.yahoo.com” instead of “66.94.230.35”.

gethostbyname() takes a string like “www.yahoo.com”, and returns a struct hostent
which contains tons of information, including the IP address. (Other information is the official host
name, a list of aliases, the address type, the length of the addresses, and the list of addresses—it's a
general-purpose structure that's pretty easy to use for our specific purposes once you see how.)

gethostbyaddr() takes a struct in_addr and brings you up a corresponding host name
(if there is one), so it's sort of the reverse of gethostbyname(). As for parameters, even though
addr is a char*, you actually want to pass in a pointer to a struct in_addr. len should be
sizeof(struct in_addr), and type should be AF_INET.

So what is this struct hostent that gets returned? It has a number of fields that contain
information about the host in question.

char *h_name The real canonical host name.

char **h_aliases A list of aliases that can be accessed with arrays—the last element
is NULL

int h_addrtype The result's address type, which really should be AF_INET for our
purposes..

int length The length of the addresses in bytes, which is 4 for IP (version 4)
addresses.

char **h_addr_list A list of IP addresses for this host. Although this is a char**, it's
really an array of struct in_addr*s in disguise. The last array
element is NULL.

h_addr A commonly defined alias for h_addr_list[0]. If you just want
any old IP address for this host (yeah, they can have more than
one) just use this field.

Return Value
Returns a pointer to a resultant struct hostent or success, or NULL on error.
Instead of the normal perror() and all that stuff you'd normally use for error reporting, these

functions have parallel results in the variable h_errno, which can be printed using the functions

Man Pages 63

herror() or hstrerror(). These work just like the classic errno, perror(), and strerror()
functions you're used to.

Example
int i;
struct hostent *he;
struct in_addr **addr_list;
struct in_addr addr;

// get the addresses of www.yahoo.com:

he = gethostbyname("www.yahoo.com");
if (he == NULL) { // do some error checking
 herror("gethostbyname"); // herror(), NOT perror()
 exit(1);
}

// print information about this host:
printf("Official name is: %s\n", he->h_name);
printf("IP address: %s\n", inet_ntoa(*(struct in_addr*)he->h_addr));
printf("All addresses: ");
addr_list = (struct in_addr **)he->h_addr_list;
for(i = 0; addr_list[i] != NULL; i++) {
 printf("%s ", inet_ntoa(*addr_list[i]));
}
printf("\n");

// get the host name of 66.94.230.32:

inet_aton("66.94.230.32", &addr);
he = gethostbyaddr(&addr, sizeof addr, AF_INET);

printf("Host name: %s\n", he->h_name);

See Also
gethostname(), errno, perror(), strerror(), struct in_addr

64 Beej's Guide to Network Programming

8.7. getpeername()

Return address info about the remote side of the connection

Prototypes
#include <sys/socket.h>

int getpeername(int s, struct sockaddr *addr, socklen_t *len);

Description
Once you have either accept()ed a remote connection, or connect()ed to a server, you now

have what is known as a peer. Your peer is simply the computer you're connected to, identified by
an IP address and a port. So...

getpeername() simply returns a struct sockaddr_in filled with information about the
machine you're connected to.

Why is it called a “name”? Well, there are a lot of different kinds of sockets, not just Internet
Sockets like we're using in this guide, and so “name” was a nice generic term that covered all cases.
In our case, though, the peer's “name” is it's IP address and port.

Although the function returns the size of the resultant address in len, you must preload len
with the size of addr.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
int s;
struct sockaddr_in server, addr;
socklen_t len;

// make a socket
s = socket(PF_INET, SOCK_STREAM, 0);

// connect to a server
server.sin_family = AF_INET;
inet_aton("63.161.169.137", &server.sin_addr);
server.sin_port = htons(80);

connect(s, (struct sockaddr*)&server, sizeof server);

// get the peer name
// we know we just connected to 63.161.169.137:80, so this should print:
// Peer IP address: 63.161.169.137
// Peer port : 80

len = sizeof addr;
getpeername(s, (struct sockaddr*)&addr, &len);
printf("Peer IP address: %s\n", inet_ntoa(addr.sin_addr));
printf("Peer port : %d\n", ntohs(addr.sin_port));

See Also
gethostname(), gethostbyname(), gethostbyaddr()

Man Pages 65

8.8. errno

Holds the error code for the last system call

Prototypes
#include <errno.h>

int errno;

Description
This is the variable that holds error information for a lot of system calls. If you'll recall, things

like socket() and listen() return -1 on error, and they set the exact value of errno to let you
know specifically which error occurred.

The header file errno.h lists a bunch of constant symbolic names for errors, such as
EADDRINUSE, EPIPE, ECONNREFUSED, etc. Your local man pages will tell you what codes can be
returned as an error, and you can use these at run time to handle different errors in different ways.

Or, more commonly, you can call perror() or strerror() to get a human-readable version
of the error.

Return Value
The value of the variable is the latest error to have transpired, which might be the code for

“success” if the last action succeeded.

Example
s = socket(PF_INET, SOCK_STREAM, 0);
if (s == -1) {
 perror("socket"); // or use strerror()
}

tryagain:
if (select(n, &readfds, NULL, NULL) == -1) {
 // an error has occurred!!

 // if we were only interrupted, just restart the select() call:
 if (errno == EINTR) goto tryagain; // AAAA! goto!!!

 // otherwise it's a more serious error:
 perror("select");
 exit(1);
}

See Also
perror(), strerror()

66 Beej's Guide to Network Programming

8.9. fcntl()

Control socket descriptors

Prototypes
#include <sys/unistd.h>
#include <sys/fcntl.h>

int fcntl(int s, int cmd, long arg);

Description
This function is typically used to do file locking and other file-oriented stuff, but it also has a

couple socket-related functions that you might see or use from time to time.
Parameter s is the socket descriptor you wish to operate on, cmd should be set to F_SETFL,

and arg can be one of the following commands. (Like I said, there's more to fcntl() than I'm
letting on here, but I'm trying to stay socket-oriented.)

O_NONBLOCK Set the socket to be non-blocking. See the section on blocking for more
details.

O_ASYNC Set the socket to do asynchronous I/O. When data is ready to be
recv()'d on the socket, the signal SIGIO will be raised. This is rare to
see, and beyond the scope of the guide. And I think it's only available
on certain systems.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)
Different uses of the fcntl() actually have different return values, but I haven't covered them

here because they're not socket-related. See your local fcntl() man page for more information.

Example
int s = socket(PF_INET, SOCK_STREAM, 0);

fcntl(s, F_SETFL, O_NONBLOCK); // set to non-blocking
fcntl(s, F_SETFL, O_ASYNC); // set to asynchronous I/O

See Also
Blocking, send()

Man Pages 67

8.10. htons(), htonl(), ntohs(), ntohl()

Convert multi-byte integer types from host byte order to network byte order

Prototypes
#include <netinet/in.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

Description
Just to make you really unhappy, different computers use different byte orderings internally

for their multibyte integers (i.e. any integer that's larger than a char.) The upshot of this is that if
you send() a two-byte short int from an Intel box to a Mac (before they became Intel boxes,
too, I mean), what one computer thinks is the number 1, the other will think is the number 256, and
vice-versa.

The way to get around this problem is for everyone to put aside their differences and agree
that Motorola and IBM had it right, and Intel did it the weird way, and so we all convert our byte
orderings to “big-endian” before sending them out. Since Intel is a “little-endian” machine, it's
far more politically correct to call our preferred byte ordering “Network Byte Order”. So these
functions convert from your native byte order to network byte order and back again.

(This means on Intel these functions swap all the bytes around, and on PowerPC they do
nothing because the bytes are already in Network Byte Order. But you should always use them in
your code anyway, since someone might want to build it on an Intel machine and still have things
work properly.)

Note that the types involved are 32-bit (4 byte, probably int) and 16-bit (2 byte, very likely
short) numbers. 64-bit machines might have a htonll() for 64-bit ints, but I've not seen it.
You'll just have to write your own.

Anyway, the way these functions work is that you first decide if you're converting from host
(your machine's) byte order or from network byte order. If “host”, the the first letter of the function
you're going to call is “h”. Otherwise it's “n” for “network”. The middle of the function name is
always “to” because you're converting from one “to” another, and the penultimate letter shows what
you're converting to. The last letter is the size of the data, “s” for short, or “l” for long. Thus:

htons() host to network short

htonl() host to network long

ntohs() network to host short

ntohl() network to host long

Return Value
Each function returns the converted value.

Example
uint32_t some_long = 10;
uint16_t some_short = 20;

68 Beej's Guide to Network Programming

uint32_t network_byte_order;

// convert and send
network_byte_order = htonl(some_long);
send(s, &network_byte_order, sizeof(uint32_t), 0);

some_short == ntohs(htons(some_short)); // this expression is true

Man Pages 69

8.11. inet_ntoa(), inet_aton()

Convert IP addresses from a dots-and-number string to a struct in_addr and back

Prototypes
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char *inet_ntoa(struct in_addr in);
int inet_aton(const char *cp, struct in_addr *inp);
in_addr_t inet_addr(const char *cp);

Description
 All of these functions convert from a struct in_addr (part of your struct

sockaddr_in, most likely) to a string in dots-and-numbers format (e.g. “192.168.5.10”) and
vice-versa. If you have an IP address passed on the command line or something, this is the easiest
way to get a struct in_addr to connect() to, or whatever. If you need more power, try some
of the DNS functions like gethostbyname() or attempt a coup d'État in your local country.

The function inet_ntoa() converts a network address in a struct in_addr to a
dots-and-numbers format string. The “n” in “ntoa” stands for network, and the “a” stands for ASCII
for historical reasons (so it's “Network To ASCII”—the “toa” suffix has an analogous friend in the
C library called atoi() which converts an ASCII string to an integer.)

The function inet_aton() is the opposite, converting from a dots-and-numbers string into a
in_addr_t (which is the type of the field s_addr in your struct in_addr.)

Finally, the function inet_addr() is an older function that does basically the same thing as
inet_aton(). It's theoretically deprecated, but you'll see it a lot and the police won't come get you
if you use it.

Return Value
inet_aton() returns non-zero if the address is a valid one, and it returns zero if the address is

invalid.
inet_ntoa() returns the dots-and-numbers string in a static buffer that is overwritten with

each call to the function.
inet_addr() returns the address as an in_addr_t, or -1 if there's an error. (That is the same

result as if you tried to convert the string “255.255.255.255”, which is a valid IP address. This is
why inet_aton() is better.)

Example
struct sockaddr_in antelope;
char *some_addr;

inet_aton("10.0.0.1", &antelope.sin_addr); // store IP in antelope

some_addr = inet_ntoa(antelope.sin_addr); // return the IP
printf("%s\n", some_addr); // prints "10.0.0.1"

// and this call is the same as the inet_aton() call, above:
antelope.sin_addr.s_addr = inet_addr("10.0.0.1");

70 Beej's Guide to Network Programming

See Also
gethostbyname(), gethostbyaddr()

Man Pages 71

8.12. listen()

Tell a socket to listen for incoming connections

Prototypes
#include <sys/socket.h>

int listen(int s, int backlog);

Description
You can take your socket descriptor (made with the socket() system call) and tell it to listen

for incoming connections. This is what differentiates the servers from the clients, guys.
The backlog parameter can mean a couple different things depending on the system you

on, but loosely it is how many pending connections you can have before the kernel starts rejecting
new ones. So as the new connections come in, you should be quick to accept() them so that the
backlog doesn't fill. Try setting it to 10 or so, and if your clients start getting “Connection refused”
under heavy load, set it higher.

Before calling listen(), your server should call bind() to attach itself to a specific port
number. That port number (on the server's IP address) will be the one that clients connect to.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
int s;
struct sockaddr_in myaddr;

myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(3490); // clients connect to this port
myaddr.sin_addr.s_addr = INADDR_ANY; // autoselect IP address

s = socket(PF_INET, SOCK_STREAM, 0);
bind(s, (struct sockaddr*)myaddr, sizeof myaddr);

listen(s, 10); // set s up to be a server (listening) socket

// then have an accept() loop down here somewhere

See Also
accept(), bind(), socket()

72 Beej's Guide to Network Programming

8.13. perror(), strerror()

Print an error as a human-readable string

Prototypes
#include <stdio.h>
#include <string.h> // for strerror()

void perror(const char *s);
char *strerror(int errnum);

Description
Since so many functions return -1 on error and set the value of the variable errno to be some

number, it would sure be nice if you could easily print that in a form that made sense to you.
Mercifully, perror() does that. If you want more description to be printed before the error,

you can point the parameter s to it (or you can leave s as NULL and nothing additional will be
printed.)

In a nutshell, this function takes errno values, like ECONNRESET, and prints them nicely, like
“Connection reset by peer.”

The function strerror() is very similar to perror(), except it returns a pointer to the error
message string for a given value (you usually pass in the variable errno.)

Return Value
strerror() returns a pointer to the error message string.

Example
int s;

s = socket(PF_INET, SOCK_STREAM, 0);

if (s == -1) { // some error has occurred
 // prints "socket error: " + the error message:
 perror("socket error");
}

// similarly:
if (listen(s, 10) == -1) {
 // this prints "an error: " + the error message from errno:
 printf("an error: %s\n", strerror(errno));
}

See Also
errno

Man Pages 73

8.14. poll()

Test for events on multiple sockets simultaneously

Prototypes
#include <sys/poll.h>

int poll(struct pollfd *ufds, unsigned int nfds, int timeout);

Description
This function is very similar to select() in that they both watch sets of file descriptors for

events, such as incoming data ready to recv(), socket ready to send() data to, out-of-band data
ready to recv(), errors, etc.

The basic idea is that you pass an array of nfds struct pollfds in ufds, along with a
timeout in milliseconds (1000 milliseconds in a second.) The timeout can be negative if you want
to wait forever. If no event happens on any of the socket descriptors by the timeout, poll() will
return.

Each element in the array of struct pollfds represents one socket descriptor, and contains
the following fields:
struct pollfd {
 int fd; // the socket descriptor
 short events; // bitmap of events we're interested in
 short revents; // when poll() returns, bitmap of events that occurred
};

Before calling poll(), load fd with the socket descriptor (if you set fd to a negative number,
this struct pollfd is ignored and its revents field is set to zero) and then construct the events
field by bitwise-ORing the following macros:

POLLIN Alert me when data is ready to recv() on this socket.

POLLOUT Alert me when I can send() data to this socket without blocking.

POLLPRI Alert me when out-of-band data is ready to recv() on this socket.

Once the poll() call returns, the revents field will be constructed as a bitwise-OR of the
above fields, telling you which descriptors actually have had that event occur. Additionally, these
other fields might be present:

POLLERR An error has occurred on this socket.

POLLHUP The remote side of the connection hung up.

POLLNVAL Something was wrong with the socket descriptor fd—maybe it's
uninitialized?

Return Value
Returns the number of elements in the ufds array that have had event occur on them; this can

be zero if the timeout occurred. Also returns -1 on error (and errno will be set accordingly.)

Example
int s1, s2;

74 Beej's Guide to Network Programming

int rv;
char buf1[256], buf2[256];
struct pollfd ufds[2];

s1 = socket(PF_INET, SOCK_STREAM, 0);
s2 = socket(PF_INET, SOCK_STREAM, 0);

// pretend we've connected both to a server at this point
//connect(s1, ...)...
//connect(s2, ...)...

// set up the array of file descriptors.
//
// in this example, we want to know when there's normal or out-of-band
// data ready to be recv()'d...

ufds[0].fd = s1;
ufds[0].events = POLLIN | POLLPRI; // check for normal or out-of-band

ufds[1] = s2;
ufds[1].events = POLLIN; // check for just normal data

// wait for events on the sockets, 3.5 second timeout
rv = poll(ufds, 2, 3500);

if (rv == -1) {
 perror("poll"); // error occurred in poll()
} else if (rv == 0) {
 printf("Timeout occurred! No data after 3.5 seconds.\n");
} else {
 // check for events on s1:
 if (ufds[0].revents & POLLIN) {
 recv(s1, buf1, sizeof buf1, 0); // receive normal data
 }
 if (ufds[0].revents & POLLPRI) {
 recv(s1, buf1, sizeof buf1, MSG_OOB); // out-of-band data
 }

 // check for events on s2:
 if (ufds[1].revents & POLLIN) {
 recv(s1, buf2, sizeof buf2, 0);
 }
}

See Also
select()

Man Pages 75

8.15. recv(), recvfrom()

Receive data on a socket

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

ssize_t recv(int s, void *buf, size_t len, int flags);
ssize_t recvfrom(int s, void *buf, size_t len, int flags,
 struct sockaddr *from, socklen_t *fromlen);

Description
Once you have a socket up and connected, you can read incoming data from the remote side

using the recv() (for TCP SOCK_STREAM sockets) and recvfrom() (for UDP SOCK_DGRAM
sockets).

Both functions take the socket descriptor s, a pointer to the buffer buf, the size (in bytes) of
the buffer len, and a set of flags that control how the functions work.

Additionally, the recvfrom() takes a struct sockaddr*, from that will tell you where
the data came from, and will fill in fromlen with the size of struct sockaddr. (You must also
initialize fromlen to be the size of from or struct sockaddr.)

So what wondrous flags can you pass into this function? Here are some of them, but you
should check your local man pages for more information and what is actually supported on your
system. You bitwise-or these together, or just set flags to 0 if you want it to be a regular vanilla
recv().

MSG_OOB Receive Out of Band data. This is how to get data that has been
sent to you with the MSG_OOB flag in send(). As the receiving
side, you will have had signal SIGURG raised telling you there is
urgent data. In your handler for that signal, you could call recv()
with this MSG_OOB flag.

MSG_PEEK If you want to call recv() “just for pretend”, you can call it with
this flag. This will tell you what's waiting in the buffer for when
you call recv() “for real” (i.e. without the MSG_PEEK flag. It's
like a sneak preview into the next recv() call.

MSG_WAITALL Tell recv() to not return until all the data you specified
in the len parameter. It will ignore your wishes in extreme
circumstances, however, like if a signal interrupts the call or if
some error occurs or if the remote side closes the connection, etc.
Don't be mad with it.

When you call recv(), it will block until there is some data to read. If you want to not block,
set the socket to non-blocking or check with select() or poll() to see if there is incoming data
before calling recv() or recvfrom().

76 Beej's Guide to Network Programming

Return Value
Returns the number of bytes actually received (which might be less than you requested in the

len parameter), or -1 on error (and errno will be set accordingly.)
If the remote side has closed the connection, recv() will return 0. This is the normal method

for determining if the remote side has closed the connection. Normality is good, rebel!

Example
int s1, s2;
int byte_count, fromlen;
struct sockaddr_in addr;
char buf[512];

// show example with a TCP stream socket first
s1 = socket(PF_INET, SOCK_STREAM, 0);

// info about the server
addr.sin_family = AF_INET;
addr.sin_port = htons(3490);
inet_aton("10.9.8.7", &addr.sin_addr);

connect(s1, &addr, sizeof addr); // connect to server

// all right! now that we're connected, we can receive some data!
byte_count = recv(s1, buf, sizeof buf, 0);
printf("recv()'d %d bytes of data in buf\n", byte_count);

// now demo for UDP datagram sockets:
s2 = socket(PF_INET, SOCK_DGRAM, 0);

fromlen = sizeof addr;
byte_count = recvfrom(s2, buf, sizeof buf, 0, &addr, &fromlen);
printf("recv()'d %d bytes of data in buf\n", byte_count);
printf("from IP address %s\n", inet_ntoa(addr.sin_addr));

See Also
send(), sendto(), select(), poll(), Blocking

Man Pages 77

8.16. select()

Check if sockets descriptors are ready to read/write

Prototypes
#include <sys/select.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
 struct timeval *timeout);

FD_SET(int fd, fd_set *set);
FD_CLR(int fd, fd_set *set);
FD_ISSET(int fd, fd_set *set);
FD_ZERO(fd_set *set);

Description
The select() function gives you a way to simultaneously check multiple sockets to see if

they have data waiting to be recv()d, or if you can send() data to them without blocking, or if
some exception has occurred.

You populate your sets of socket descriptors using the macros, like FD_SET(), above. Once
you have the set, you pass it into the function as one of the following parameters: readfds if you
want to know when any of the sockets in the set is ready to recv() data, writefds if any of the
sockets is ready to send() data to, and/or exceptfds if you need to know when an exception
(error) occurs on any of the sockets. Any or all of these parameters can be NULL if you're not
interested in those types of events. After select() returns, the values in the sets will be changed to
show which are ready for reading or writing, and which have exceptions.

The first parameter, n is the highest-numbered socket descriptor (they're just ints, remember?)
plus one.

Lastly, the struct timeval, timeout, at the end—this lets you tell select() how long to
check these sets for. It'll return after the timeout, or when an event occurs, whichever is first. The
struct timeval has two fields: tv_sec is the number of seconds, to which is added tv_usec,
the number of microseconds (1,000,000 microseconds in a second.)

The helper macros do the following:

FD_SET(int fd, fd_set *set); Add fd to the set.

FD_CLR(int fd, fd_set *set); Remove fd from the set.

FD_ISSET(int fd, fd_set *set); Return true if fd is in the set.

FD_ZERO(fd_set *set); Clear all entries from the set.

Return Value
Returns the number of descriptors in the set on success, 0 if the timeout was reached, or -1 on

error (and errno will be set accordingly.) Also, the sets are modified to show which sockets are
ready.

Example
int s1, s2, n;
fd_set readfds;
struct timeval tv;

78 Beej's Guide to Network Programming

char buf1[256], buf2[256];

s1 = socket(PF_INET, SOCK_STREAM, 0);
s2 = socket(PF_INET, SOCK_STREAM, 0);

// pretend we've connected both to a server at this point
//connect(s1, ...)...
//connect(s2, ...)...

// clear the set ahead of time
FD_ZERO(&readfds);

// add our descriptors to the set
FD_SET(s1, &readfds);
FD_SET(s2, &readfds);

// since we got s2 second, it's the "greater", so we use that for
// the n param in select()
n = s2 + 1;

// wait until either socket has data ready to be recv()d (timeout 10.5 secs)
tv.tv_sec = 10;
tv.tv_usec = 500000;
rv = select(n, &readfds, NULL, NULL, &tv);

if (rv == -1) {
 perror("select"); // error occurred in select()
} else if (rv == 0) {
 printf("Timeout occurred! No data after 10.5 seconds.\n");
} else {
 // one or both of the descriptors have data
 if (FD_ISSET(s1, &readfds)) {
 recv(s1, buf1, sizeof buf1, 0);
 }
 if (FD_ISSET(s2, &readfds)) {
 recv(s1, buf2, sizeof buf2, 0);
 }
}

See Also
poll()

Man Pages 79

8.17. setsockopt(), getsockopt()

Set various options for a socket

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void *optval,
 socklen_t *optlen);
int setsockopt(int s, int level, int optname, const void *optval,
 socklen_t optlen);

Description
Sockets are fairly configurable beasts. In fact, they are so configurable, I'm not even going to

cover it all here. It's probably system-dependent anyway. But I will talk about the basics.
Obviously, these functions get and set certain options on a socket. On a Linux box, all the

socket information is in the man page for socket in section 7. (Type: “man 7 socket” to get all these
goodies.)

As for parameters, s is the socket you're talking about, level should be set to SOL_SOCKET.
Then you set the optname to the name you're interested in. Again, see your man page for all the
options, but here are some of the most fun ones:

SO_BINDTODEVICE Bind this socket to a symbolic device name like eth0 instead
of using bind() to bind it to an IP address. Type the command
ifconfig under Unix to see the device names.

SO_REUSEADDR Allows other sockets to bind() to this port, unless there is an
active listening socket bound to the port already. This enables you
to get around those “Address already in use” error messages when
you try to restart your server after a crash.

SO_BROADCAST Allows UDP datagram (SOCK_DGRAM) sockets to send and
receive packets sent to and from the broadcast address. Does
nothing—NOTHING!!—to TCP stream sockets! Hahaha!

As for the parameter optval, it's usually a pointer to an int indicating the value in question.
For booleans, zero is false, and non-zero is true. And that's an absolute fact, unless it's different on
your system. If there is no parameter to be passed, optval can be NULL.

The final parameter, optlen, is filled out for you by getsockopt() and you have to specify
it for getsockopt(), where it will probably be sizeof(int).

Warning: on some systems (notably Sun and Windows), the option can be a char instead of
an int, and is set to, for example, a character value of '1' instead of an int value of 1. Again,
check your own man pages for more info with “man setsockopt” and “man 7 socket”!

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
int optval;

80 Beej's Guide to Network Programming

int optlen;
char *optval2;

// set SO_REUSEADDR on a socket to true (1):
optval = 1;
setsockopt(s1, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof optval);

// bind a socket to a device name (might not work on all systems):
optval2 = "eth1"; // 4 bytes long, so 4, below:
setsockopt(s2, SOL_SOCKET, SO_BINDTODEVICE, optval2, 4);

// see if the SO_BROADCAST flag is set:
getsockopt(s3, SOL_SOCKET, SO_BROADCAST, &optval, &optlen);
if (optval != 0) {
 print("SO_BROADCAST enabled on s3!\n");
}

See Also
fcntl()

Man Pages 81

8.18. send(), sendto()

Send data out over a socket

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

ssize_t send(int s, const void *buf, size_t len, int flags);
ssize_t sendto(int s, const void *buf, size_t len,
 int flags, const struct sockaddr *to,
 socklen_t tolen);

Description
These functions send data to a socket. Generally speaking, send() is used for TCP

SOCK_STREAM connected sockets, and sendto() is used for UDP SOCK_DGRAM unconnected
datagram sockets. With the unconnected sockets, you must specify the destination of a packet each
time you send one, and that's why the last parameters of sendto() define where the packet is
going.

With both send() and sendto(), the parameter s is the socket, buf is a pointer to the data
you want to send, len is the number of bytes you want to send, and flags allows you to specify
more information about how the data is to be sent. Set flags to zero if you want it to be “normal”
data. Here are some of the commonly used flags, but check your local send() man pages for more
details:

MSG_OOB Send as “out of band” data. TCP supports this, and it's a way to
tell the receiving system that this data has a higher priority than
the normal data. The receiver will receive the signal SIGURG and it
can then receive this data without first receiving all the rest of the
normal data in the queue.

MSG_DONTROUTE Don't send this data over a router, just keep it local.

MSG_DONTWAIT If send() would block because outbound traffic is clogged, have
it return EAGAIN. This is like a “enable non-blocking just for this
send.” See the section on blocking for more details.

MSG_NOSIGNAL If you send() to a remote host which is no longer recv()ing,
you'll typically get the signal SIGPIPE. Adding this flag prevents
that signal from being raised.

Return Value
Returns the number of bytes actually sent, or -1 on error (and errno will be set accordingly.)

Note that the number of bytes actually sent might be less than the number you asked it to send! See
the section on handling partial send()s for a helper function to get around this.

Also, if the socket has been closed by either side, the process calling send() will get the
signal SIGPIPE. (Unless send() was called with the MSG_NOSIGNAL flag.)

Example
int spatula_count = 3490;

82 Beej's Guide to Network Programming

char *secret_message = "The Cheese is in The Toaster";

int stream_socket, dgram_socket;
struct sockaddr_in dest;
int temp;

// first with TCP stream sockets:
stream_socket = socket(PF_INET, SOCK_STREAM, 0);
.
.
.
// convert to network byte order
temp = htonl(spatula_count);
// send data normally:
send(stream_socket, &temp, sizeof temp, 0);

// send secret message out of band:
send(stream_socket, secret_message, strlen(secret_message)+1, MSG_OOB);

// now with UDP datagram sockets:
dgram_socket = socket(PF_INET, SOCK_DGRAM, 0);
.
.
.
// build destination
dest.sin_family = AF_INET;
inet_aton("10.0.0.1", &dest.sin_addr);
dest.sin_port = htons(2223);

// send secret message normally:
sendto(dgram_socket, secret_message, strlen(secret_message)+1, 0,
 (struct sockaddr*)&dest, sizeof dest);

See Also
recv(), recvfrom()

Man Pages 83

8.19. shutdown()

Stop further sends and receives on a socket

Prototypes
#include <sys/socket.h>

int shutdown(int s, int how);

Description
That's it! I've had it! No more send()s are allowed on this socket, but I still want to recv()

data on it! Or vice-versa! How can I do this?
When you close() a socket descriptor, it closes both sides of the socket for reading and

writing, and frees the socket descriptor. If you just want to close one side or the other, you can use
this shutdown() call.

As for parameters, s is obviously the socket you want to perform this action on, and what
action that is can be specified with the how parameter. How can be SHUT_RD to prevent further
recv()s, SHUT_WR to prohibit further send()s, or SHUT_RDWR to do both.

Note that shutdown() doesn't free up the socket descriptor, so you still have to eventually
close() the socket even if it has been fully shut down.

This is a rarely used system call.

Return Value
Returns zero on success, or -1 on error (and errno will be set accordingly.)

Example
int s = socket(PF_INET, SOCK_STREAM, 0);

// ...do some send()s and stuff in here...

// and now that we're done, don't allow any more sends()s:
shutdown(s, SHUT_RD);

See Also
close()

84 Beej's Guide to Network Programming

8.20. socket()

Allocate a socket descriptor

Prototypes
#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Description
Returns a new socket descriptor that you can use to do sockety things with. This is generally

the first call in the whopping process of writing a socket program, and you can use the result for
subsequent calls to listen(), bind(), accept(), or a variety of other functions.

domain domain describes what kind of socket you're interested in. This can, believe
me, be a wide variety of things, but since this is a socket guide, it's going to
be PF_INET for you. And, correspondingly, when you load up your struct
sockaddr_in to use with this socket, you're going to set the sin_family
field to AF_INET

(Also of interest is PF_INET6 if you're going to be doing IPv6 stuff. If you
don't know what that is, don't worry about it...yet.)

type Also, the type parameter can be a number of things, but you'll probably
be setting it to either SOCK_STREAM for reliable TCP sockets (send(),
recv()) or SOCK_DGRAM for unreliable fast UDP sockets (sendto(),
recvfrom().)

(Another interesting socket type is SOCK_RAW which can be used to construct
packets by hand. It's pretty cool.)

protocol Finally, the protocol parameter tells which protocol to use with a certain
socket type. Like I've already said, for instance, SOCK_STREAM uses TCP.
Fortunately for you, when using SOCK_STREAM or SOCK_DGRAM, you can
just set the protocol to 0, and it'll use the proper protocol automatically.
Otherwise, you can use getprotobyname() to look up the proper protocol
number.

Return Value
The new socket descriptor to be used in subsequent calls, or -1 on error (and errno will be set

accordingly.)

Example
int s1, s2;

s1 = socket(PF_INET, SOCK_STREAM, 0);
s2 = socket(PF_INET, SOCK_DGRAM, 0);

if (s1 == -1) {
 perror("socket");

Man Pages 85

}

See Also
accept(), bind(), listen()

86 Beej's Guide to Network Programming

8.21. struct sockaddr_in, struct in_addr

Structures for handling internet addresses

Prototypes
#include <netinet/in.h>

struct sockaddr_in {
 short sin_family; // e.g. AF_INET
 unsigned short sin_port; // e.g. htons(3490)
 struct in_addr sin_addr; // see struct in_addr, below
 char sin_zero[8]; // zero this if you want to
};

struct in_addr {
 unsigned long s_addr; // load with inet_aton()
};

Description
These are the basic structures for all syscalls and functions that deal with internet addresses. In

memory, the struct sockaddr_in is the same size as struct sockaddr, and you can freely
cast the pointer of one type to the other without any harm, except the possible end of the universe.

Just kidding on that end-of-the-universe thing...if the universe does end when you cast a
struct sockaddr_in* to a struct sockaddr*, I promise you it's pure coincidence and you
shouldn't even worry about it.

So, with that in mind, remember that whenever a function says it takes a struct sockaddr*
you can cast your struct sockaddr_in* to that type with ease and safety.

There's also this sin_zero field which some people claim must be set to zero. Other people
don't claim anything about it (the Linux documentation doesn't even mention it at all), and setting it
to zero doesn't seem to be actually necessary. So, if you feel like it, set it to zero using memset().

Now, that struct in_addr is a weird beast on different systems. Sometimes it's a crazy
union with all kinds of #defines and other nonsense. But what you should do is only use the
s_addr field in this structure, because many systems only implement that one.

With IPv4 (what basically everyone in 2005 still uses), the struct s_addr is a 4-byte
number that represents one digit in an IP address per byte. (You won't ever see an IP address with a
number in it greater than 255.)

Example
struct sockaddr_in myaddr;
int s;

myaddr.sin_family = AF_INET;
myaddr.sin_port = htons(3490);
inet_aton("10.0.0.1", &myaddr.sin_addr);

s = socket(PF_INET, SOCK_STREAM, 0);
bind(s, (struct sockaddr*)&myaddr, sizeof myaddr);

See Also
accept(), bind(), connect(), inet_aton(), inet_ntoa()

87

9. More References

You've come this far, and now you're screaming for more! Where else can you go to learn
more about all this stuff?

9.1. Books
For old-school actual hold-it-in-your-hand pulp paper books, try some of the following

excellent books. I used to be an affiliate with a very popular internet bookseller, but their new
customer tracking system is incompatible with a print document. As such, I get no more kickbacks.
If you feel compassion for my plight, paypal a donation to beej@beej.us. :-)

Unix Network Programming, volumes 1-2 by W. Richard Stevens. Published by Prentice
Hall. ISBNs for volumes 1-2: 0131411551 32, 0130810819 33.

Internetworking with TCP/IP, volumes I-III by Douglas E. Comer and David L. Stevens.
Published by Prentice Hall. ISBNs for volumes I, II, and III: 0131876716 34,
0130319961 35, 0130320714 36.

TCP/IP Illustrated, volumes 1-3 by W. Richard Stevens and Gary R. Wright. Published by
Addison Wesley. ISBNs for volumes 1, 2, and 3 (and a 3-volume set): 0201633469
37, 020163354X 38, 0201634953 39, (0201776316 40).

TCP/IP Network Administration by Craig Hunt. Published by O'Reilly & Associates, Inc.
ISBN 0596002971 41.

Advanced Programming in the UNIX Environment by W. Richard Stevens. Published by
Addison Wesley. ISBN 0201433079 42.

9.2. Web References
On the web:

BSD Sockets: A Quick And Dirty Primer 43 (Unix system programming info, too!)

The Unix Socket FAQ 44

Intro to TCP/IP 45

TCP/IP FAQ 46

The Winsock FAQ 47

32. http://beej.us/guide/url/unixnet1
33. http://beej.us/guide/url/unixnet2
34. http://beej.us/guide/url/intertcp1
35. http://beej.us/guide/url/intertcp2
36. http://beej.us/guide/url/intertcp3
37. http://beej.us/guide/url/tcpi1
38. http://beej.us/guide/url/tcpi2
39. http://beej.us/guide/url/tcpi3
40. http://beej.us/guide/url/tcpi123
41. http://beej.us/guide/url/tcpna
42. http://beej.us/guide/url/advunix
43. http://www.frostbytes.com/jimf/papers/sockets/sockets.html
44. http://www.developerweb.net/forum/forumdisplay.php?f=70
45. http://pclt.cis.yale.edu/pclt/COMM/TCPIP.HTM
46. http://www.faqs.org/faqs/internet/tcp-ip/tcp-ip-faq/part1/
47. http://tangentsoft.net/wskfaq/

http://beej.us/guide/url/unixnet1
http://beej.us/guide/url/unixnet2
http://beej.us/guide/url/intertcp1
http://beej.us/guide/url/intertcp2
http://beej.us/guide/url/intertcp3
http://beej.us/guide/url/tcpi1
http://beej.us/guide/url/tcpi2
http://beej.us/guide/url/tcpi3
http://beej.us/guide/url/tcpi123
http://beej.us/guide/url/tcpna
http://beej.us/guide/url/advunix
http://www.frostbytes.com/jimf/papers/sockets/sockets.html
http://www.developerweb.net/forum/forumdisplay.php?f=70
http://pclt.cis.yale.edu/pclt/COMM/TCPIP.HTM
http://www.faqs.org/faqs/internet/tcp-ip/tcp-ip-faq/part1/
http://tangentsoft.net/wskfaq/

88 Beej's Guide to Network Programming

And here are some relevant Wikipedia pages:

Berkeley Sockets 48

Internet Protocol (IP) 49

Transmission Control Protocol (TCP) 50

User Datagram Protocol (UDP) 51

Client-Server 52

Serialization 53 (packing and unpacking data)

9.3. RFCs
RFCs 54—the real dirt:

RFC 768 55—The User Datagram Protocol (UDP)

RFC 791 56—The Internet Protocol (IP)

RFC 793 57—The Transmission Control Protocol (TCP)

RFC 854 58—The Telnet Protocol

RFC 951 59—The Bootstrap Protocol (BOOTP)

RFC 1350 60—The Trivial File Transfer Protocol (TFTP)

RFC 4506 61—External Data Representation Standard (XDR)

The IETF has a nice online tool for searching and browsing RFCs 62.

48. http://en.wikipedia.org/wiki/Berkeley_sockets
49. http://en.wikipedia.org/wiki/Internet_Protocol
50. http://en.wikipedia.org/wiki/Transmission_Control_Protocol
51. http://en.wikipedia.org/wiki/User_Datagram_Protocol
52. http://en.wikipedia.org/wiki/Client-server
53. http://en.wikipedia.org/wiki/Serialization
54. http://www.rfc-editor.org/
55. http://tools.ietf.org/html/rfc768
56. http://tools.ietf.org/html/rfc791
57. http://tools.ietf.org/html/rfc793
58. http://tools.ietf.org/html/rfc854
59. http://tools.ietf.org/html/rfc951
60. http://tools.ietf.org/html/rfc1350
61. http://tools.ietf.org/html/rfc4506
62. http://tools.ietf.org/rfc/

http://en.wikipedia.org/wiki/Berkeley_sockets
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Client-server
http://en.wikipedia.org/wiki/Serialization
http://www.rfc-editor.org/
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc854
http://tools.ietf.org/html/rfc951
http://tools.ietf.org/html/rfc1350
http://tools.ietf.org/html/rfc4506
http://tools.ietf.org/rfc/

89

Index

10.x.x.x 12
192.168.x.x 12

255.255.255.255 46, 69

accept() 16, 16, 56
Address already in use 15, 49
AF_INET 9, 13, 52, 84
asynchronous I/O 66

Bapper 48
bind() 13, 49, 58

implicit 15, 16
blah blah blah 8
blocking 29
books 87
BOOTP 88
broadcast 11, 46
byte ordering 9, 9, 10, 14, 36, 67

client
datagram 27
stream 25

client/server 23
close() 19, 60
closesocket() 2, 20, 60
compilers

gcc 1
compression 51
connect() 5, 14, 15, 15, 59

on datagram sockets 19, 28, 59
Connection refused 26
CreateProcess() 2, 53
CreateThread() 2
CSocket 2

data encapsulation 6, 35
disconnected network see private network.
DNS 20
domain name service see DNS.
donkeys 35

EAGAIN 81
email to Beej 3
encryption 51
EPIPE 60
errno 65, 72
Ethernet 7
EWOULDBLOCK 29, 56
Excalibur 45
external data representation standard see XDR.

F_SETFL 66

fcntl() 29, 56, 66
FD_CLR() 30, 77
FD_ISSET() 30, 77
FD_SET() 30, 77
FD_ZERO() 30, 77
file descriptor 5
firewall 12, 48, 53

poking holes in 53
footer 6
fork() 2, 23, 53

gethostbyaddr() 20, 62
gethostbyname() 20, 61, 62
gethostname() 20, 61
getpeername() 20, 64
getprotobyname() 84
getsockopt() 79
gettimeofday() 31
goat 49
goto 50

header 6
header files 49
herror() 21, 22, 63
hstrerror() 63
htonl() 10, 67, 67
htons() 10, 36, 67, 67
HTTP protocol 5

ICMP 49
IEEE-754 37
INADDR_ANY 14
INADDR_BROADCAST 46
inet_addr() 10, 69
inet_aton() 11, 69
inet_ntoa() 11, 20, 69
Internet Control Message Protocol see ICMP.
Internet protocol see IP.
Internet Relay Chat see IRC.
ioctl() 53
IP 6, 7, 14, 19, 20, 88
IP address 10, 58, 61, 62, 64
IPv6 84
IRC 36
ISO/OSI 7

layered network model see ISO/OSI.
listen() 13, 16, 71

backlog 16
with select() 31

lo see loopback device.
localhost 49
loopback device 49

90 Beej's Guide to Network Programming

man pages 55
Maximum Transmission Unit see MTU.
mirroring 3
MSG_DONTROUTE 81
MSG_DONTWAIT 81
MSG_NOSIGNAL 81
MSG_OOB 75, 81
MSG_PEEK 75
MSG_WAITALL 75
MTU 52

NAT 12
netstat 49, 49
network address translation see NAT.
non-blocking sockets 29, 56, 66, 81
ntohl() 10, 67, 67
ntohs() 10, 67, 67

O_ASYNC see asynchronous I/O.
O_NONBLOCK see non-blocking sockets.
OpenSSL 51
out-of-band data 75, 81

packet sniffer 53
Pat 48
perror() 65, 72
PF_INET 13, 52, 84
PF_INET6 84
ping 49
poll() 34, 73
port 19, 58, 64
ports 13, 15
private network 12
promiscuous mode 53

raw sockets 5, 49
read() 5
recv() 5, 5, 18, 75

timeout 50
recvfrom() 19, 75
recvtimeout() 51
references 87

web-based 87
RFCs 88
route 49

SA_RESTART 50
Secure Sockets Layer see SSL.
security 52
select() 2, 29, 29, 49, 50, 77

with listen() 31
send() 5, 5, 7, 18, 81
sendall() 34, 44
sendto() 7, 81
serialization 35
server

datagram 26
stream 23

setsockopt() 15, 46, 49, 54, 79
shutdown() 19, 83
sigaction() 25, 50
SIGIO 66
SIGPIPE 60, 81
SIGURG 75, 81
SO_BINDTODEVICE 79
SO_BROADCAST 46, 79
SO_RCVTIMEO 54
SO_REUSEADDR 15, 49, 79
SO_SNDTIMEO 54
SOCK_DGRAM see socket;datagram.
SOCK_RAW 84
SOCK_STREAM see socket;stream.
socket 5

datagram 5, 6, 6, 13, 18, 75, 79, 81, 84
raw 5
stream 5, 5, 13, 56, 75, 81, 84
types 5, 5

socket descriptor 5, 9
socket() 5, 13, 84
SOL_SOCKET 79
Solaris 1, 79
SSL 51
strerror() 65, 72
struct hostent 21, 62
struct in_addr 9, 11, 86
struct pollfd 73
struct sockaddr 9, 19, 75, 86
struct sockaddr_in 9, 56, 86
struct timeval 30, 77
SunOS 1, 79

TCP 6, 84, 88
gcc 5, 88
TFTP 6, 88
timeout, setting 54
translations 3
transmission control protocol see TCP.
TRON 15

UDP 6, 7, 46, 84, 88
user datagram protocol see UDP.

Windows 1, 20, 49, 60, 79
Winsock 2, 20
Winsock FAQ 2
write() 5
WSACleanup() 2
WSAStartup() 2

XDR 43, 88

zombie process 25

	Contents
	Intro
	Audience
	Platform and Compiler
	Official Homepage
	Note for Solaris/SunOS Programmers
	Note for Windows Programmers
	Email Policy
	Mirroring
	Note for Translators
	Copyright and Distribution

	What is a socket?
	Two Types of Internet Sockets
	Low level Nonsense and Network Theory

	structs and Data Handling
	Convert the Natives!
	IP Addresses and How to Deal With Them
	Private (Or Disconnected) Networks

	System Calls or Bust
	socket()—Get the File Descriptor!
	bind()—What port am I on?
	connect()—Hey, you!
	listen()—Will somebody please call me?
	accept()—"Thank you for calling port 3490."
	send() and recv()—Talk to me, baby!
	sendto() and recvfrom()—Talk to me, DGRAM-style
	close() and shutdown()—Get outta my face!
	getpeername()—Who are you?
	gethostname()—Who am I?
	DNS—You say "whitehouse.gov", I say "63.161.169.137"

	Client-Server Background
	A Simple Stream Server
	A Simple Stream Client
	Datagram Sockets

	Slightly Advanced Techniques
	Blocking
	select()—Synchronous I/O Multiplexing
	Handling Partial send()s
	Serialization—How to Pack Data
	Son of Data Encapsulation
	Broadcast Packets—Hello, World!

	Common Questions
	Man Pages
	accept()
	bind()
	connect()
	close()
	gethostname()
	gethostbyname(), gethostbyaddr()
	getpeername()
	errno
	fcntl()
	htons(), htonl(), ntohs(), ntohl()
	inet_ntoa(), inet_aton()
	listen()
	perror(), strerror()
	poll()
	recv(), recvfrom()
	select()
	setsockopt(), getsockopt()
	send(), sendto()
	shutdown()
	socket()
	struct sockaddr_in, struct in_addr

	More References
	Books
	Web References
	RFCs

	Index

